数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 愚工688

偶数M表为两个素数和数量(单记)的区域下界计算值infS(m)与实际验证

[复制链接]
 楼主| 发表于 2018-12-1 20:59 | 显示全部楼层
本帖最后由 愚工688 于 2018-12-1 13:00 编辑

在9楼最后,我写道:当然再大一些到1600亿附近的偶数,使用 μ=0.162的修正系数进行计算,则出现正的相对误差是很可能的。
下面验证一下:

G(160000000000) = 229574132;
inf( 160000000000 )≈  229559235.1 , Δ≈-0.0000649,infS( 160000000000 )= 172169426.33 , k(m)= 1.33333
G(160000000002) = 367315420;
inf( 160000000002 )≈  367295743.5 , Δ≈-0.0000536,infS( 160000000002 )= 172169426.33 , k(m)= 2.13334
G(160000000004) = 187842530;
inf( 160000000004 )≈  187821192.4 , Δ≈-0.0001136,infS( 160000000004 )= 172169426.34 , k(m)= 1.09091
G(160000000006) = 233415788;
inf( 160000000006 )≈  233400374.2 , Δ≈-0.00006604,infS( 160000000006 )= 172169426.34 , k(m)= 1.35564
G(160000000008) = 364844031;
inf( 160000000008 )≈  364820136.6 , Δ≈-0.00006549,infS( 160000000008 )= 172169426.34 , k(m)= 2.11896
G(160000000010) = 229594896;
inf( 160000000010 )≈  229576603.6 , Δ≈-0.00007968,infS( 160000000010 )= 172169426.34 , k(m)= 1.33343
G(160000000012) = 172177687;
inf( 160000000012 )≈  172169426.4 , Δ≈-0.00004798,infS( 160000000012 )= 172169426.35 , k(m)= 1
G(160000000014) = 344517826;
inf( 160000000014 )≈  344485068.8 , Δ≈-0.00009508,infS( 160000000014 )= 172169426.35 , k(m)= 2.00085
G(160000000016) = 173984721;
inf( 160000000016 )≈  173963873.9 , Δ≈-0.0001198,infS( 160000000016 )= 172169426.35 , k(m)= 1.01042
G(160000000018) = 172437293;
inf( 160000000018 )≈  172421542.3 , Δ≈-0.00009134,infS( 160000000018 )= 172169426.35 , k(m)= 1.00146
G(160000000020) = 608929641;
inf( 160000000020 )≈  608894599.4 , Δ≈-0.00005755,infS( 160000000020 )= 172169426.35 , k(m)= 3.5366
G(160000000022) = 172220877;
inf( 160000000022 )≈  172211531.9 , Δ≈-0.00005426,infS( 160000000022 )= 172169426.36 , k(m)= 1.00024

计算式:
inf( 160000000000 ) = 1/(1+ .162 )*( 160000000000 /2 -2)*p(m) ≈ 229559235.1
inf( 160000000002 ) = 1/(1+ .162 )*( 160000000002 /2 -2)*p(m) ≈ 367295743.5
inf( 160000000004 ) = 1/(1+ .162 )*( 160000000004 /2 -2)*p(m) ≈ 187821192.4
inf( 160000000006 ) = 1/(1+ .162 )*( 160000000006 /2 -2)*p(m) ≈ 233400374.2
inf( 160000000008 ) = 1/(1+ .162 )*( 160000000008 /2 -2)*p(m) ≈ 364820136.6
inf( 160000000010 ) = 1/(1+ .162 )*( 160000000010 /2 -2)*p(m) ≈ 229576603.6
inf( 160000000012 ) = 1/(1+ .162 )*( 160000000012 /2 -2)*p(m) ≈ 172169426.4
inf( 160000000014 ) = 1/(1+ .162 )*( 160000000014 /2 -2)*p(m) ≈ 344485068.8
inf( 160000000016 ) = 1/(1+ .162 )*( 160000000016 /2 -2)*p(m) ≈ 173963873.9
inf( 160000000018 ) = 1/(1+ .162 )*( 160000000018 /2 -2)*p(m) ≈ 172421542.3
inf( 160000000020 ) = 1/(1+ .162 )*( 160000000020 /2 -2)*p(m) ≈ 608894599.4
inf( 160000000022 ) = 1/(1+ .162 )*( 160000000022 /2 -2)*p(m) ≈ 172211531.9

验证结果是连续的12个偶数中没有出现正的相对误差。但是相对误差的绝对值都已经很小,最大的也不到0.00012 。也许是计算的偶数样本比较少,因此没有遇上出现出现正的相对误差的偶数。
当然如果偶数继续增大到1700亿,那么出现正的相对误差则是必然的。
后面会继续验证,看看预测的怎么样。
发表于 2018-12-3 10:48 | 显示全部楼层
愚工688 发表于 2018-12-1 20:59
在9楼最后,我写道:当然再大一些到1600亿附近的偶数,使用 μ=0.162的修正系数进行计算,则出现正的相对误 ...

愚工您好!本网站恢复了,祝贺!不过,哪些什么公司,的捣乱,恐怕不会长。那个贴吧,您去不去了?那个也是被人控制·搞钱。望回复·。
 楼主| 发表于 2018-12-3 20:30 | 显示全部楼层
重生888@ 发表于 2018-12-3 02:48
愚工您好!本网站恢复了,祝贺!不过,哪些什么公司,的捣乱,恐怕不会长。那个贴吧,您去不去了?那个也 ...

我那里也去看看。
能够发的帖子就发,不让发就闪。反正什么高级会员我是不会申办的。
 楼主| 发表于 2018-12-3 21:08 | 显示全部楼层
如同10楼那样,验证一下1600亿的区域下界计算值的精度,验证范围为1600亿前后各100个偶数的素对真值。

区域下界计算值 ,infS( 160000000000 )= 172169426.3 ,向上取整= 172169427,(见11#楼)
同样把中间素数对数量大于172200000的偶数删除,仅仅保留一个最大的素对数量的偶数。
则区域下界计算值的精度 jdz =172169427 / 172173051≈0.999978847,是比较高的计算精度。

同样,对于区域最高点: G(159999999900) = 548307261 ;
因子分解:159999999900 = 2 * 2 * 3 * 5 * 5 * 13 * 17 * 67 * 181 * 199
素因子系数 K(m)=2*4/3*12/11*16/15*66/65*180/179*198/197=3.1844544;
高点下界计算值 inf(159999999900)=3.1844544*172169427 =548265689;
高点下界计算值精度 jdz =548265689/548307261= 0.99992418;同样是比较高的计算精度。

1600亿±200 区域中素数对数量小于172200000的偶数,仅仅保留一个最大的素对数量的偶数具体偶数数据:
G(159999999800) = 229593730
G(159999999806) = 172179615
G(159999999812) = 172188919
G(159999999844) = 172185328
G(159999999854) = 172185322
G(159999999868) = 172190256
G(159999999900) = 548307261 (区域样本素对数量最高)
G(159999999916) = 172187470
G(159999999956) = 172185984
G(159999999958) = 172173872
G(159999999986) = 172186391
G(159999999994) = 172190133
G(159999999998) = 172180967
G(160000000012) = 172177687
G(160000000042) = 172186908
G(160000000054) = 172185339
G(160000000064) = 172188794
G(160000000114) = 172184990
G(160000000124) = 172173051—— 区域最小
G(160000000144) = 172183271
G(160000000154) = 172185738
G(160000000156) = 172184144
G(160000000166) = 172184072
G(160000000178) = 172187103
G(160000000200) = 460986050
 楼主| 发表于 2018-12-4 19:43 | 显示全部楼层
在11楼最后,我做的预测:使用 μ=0.162的修正系数进行计算的条件下,如果偶数继续增大到1700亿,那么出现正的相对误差则是必然的。
下面来验证这个预测的正确程度。

G(170000000000) = 258900543;
inf( 170000000000 )≈  258966062.1 , Δ≈0.00025307 ,infS(  m )= 182085512.38 , k(m)= 1.42222
G(170000000002) = 218461602;
inf( 170000000002 )≈  218502614.9 , Δ≈0.00018774 ,infS(  m )= 182085512.39 , k(m)= 1.2
G(170000000004) = 381425390;
inf( 170000000004 )≈  381512502.2 , Δ≈0.00022839 ,infS(  m )= 182085512.39 , k(m)= 2.09524
G(170000000006) = 185153680;
inf( 170000000006 )≈  185181747.1 , Δ≈0.00015159 ,infS(  m )= 182085512.39 , k(m)= 1.017
G(170000000008) = 188343060;
inf( 170000000008 )≈  188364323.2 , Δ≈0.00011290 ,infS(  m )= 182085512.39 , k(m)= 1.03448
G(170000000010) = 494981724;
inf( 170000000010 )≈  495082177.5 , Δ≈0.00020249 ,infS(  m )= 182085512.39 , k(m)= 2.71895
G(170000000012) = 182055620;
inf( 170000000012 )≈  182085512.4 , Δ≈0.00016419 ,infS(  m )= 182085512.4 , k(m)= 1
G(170000000014) = 205959226;
inf( 170000000014 )≈  205995731.2 , Δ≈0.00017724 ,infS(  m )= 182085512.4 , k(m)= 1.13131
G(170000000016) = 485476431;
inf( 170000000016 )≈  485561366.4 , Δ≈0.00017495 ,infS(  m )= 182085512.4 , k(m)= 2.66667
G(170000000018) = 192755569;
inf( 170000000018 )≈  192796424.9 , Δ≈0.00021196 ,infS(  m )= 182085512.4 , k(m)= 1.05882
G(170000000020) = 242927513;
inf( 170000000020 )≈  242966722.1 , Δ≈0.00016140 ,infS(  m )= 182085512.4 , k(m)= 1.33436
G(170000000022) = 365664263;
inf( 170000000022 )≈  365747522.8 , Δ≈0.00022769 ,infS( m )= 182085512.41 , k(m)= 2.00866

计算式:
inf( 170000000000 ) = 1/(1+ .162 )*( 170000000000 /2 -2)*p(m) ≈ 258966062.1
inf( 170000000002 ) = 1/(1+ .162 )*( 170000000002 /2 -2)*p(m) ≈ 218502614.9
inf( 170000000004 ) = 1/(1+ .162 )*( 170000000004 /2 -2)*p(m) ≈ 381512502.2
inf( 170000000006 ) = 1/(1+ .162 )*( 170000000006 /2 -2)*p(m) ≈ 185181747.1
inf( 170000000008 ) = 1/(1+ .162 )*( 170000000008 /2 -2)*p(m) ≈ 188364323.2
inf( 170000000010 ) = 1/(1+ .162 )*( 170000000010 /2 -2)*p(m) ≈ 495082177.5
inf( 170000000012 ) = 1/(1+ .162 )*( 170000000012 /2 -2)*p(m) ≈ 182085512.4
inf( 170000000014 ) = 1/(1+ .162 )*( 170000000014 /2 -2)*p(m) ≈ 205995731.2
inf( 170000000016 ) = 1/(1+ .162 )*( 170000000016 /2 -2)*p(m) ≈ 485561366.4
inf( 170000000018 ) = 1/(1+ .162 )*( 170000000018 /2 -2)*p(m) ≈ 192796424.9
inf( 170000000020 ) = 1/(1+ .162 )*( 170000000020 /2 -2)*p(m) ≈ 242966722.1
inf( 170000000022 ) = 1/(1+ .162 )*( 170000000022 /2 -2)*p(m) ≈ 365747522.8

time start =21:17:38time end =21:43:18 time use =

很显然,这个预测是完全正确的,所计算的12个偶是的相对误差全部是正值。
 楼主| 发表于 2018-12-5 20:44 | 显示全部楼层
如同14楼那样,在15楼1700亿的偶数素对计算值的相对误差全部为正值的情况下,计算区间1700亿±200内素对数量最小与最大的偶数的计算值的计算精度。
因为区域下界计算值 infS(  m )= 182085512.38 ,取整后为182085513。把1700亿±200区域内素对数量大于 infS(  m ) 的偶数删除掉,仅仅保留其中素对最大的偶数,以便区域下界计算值的精度、以及最高值的精度。
区域下界计算值 infS(  m )的计算精度:182085513/182025062=1.00033;即相对误差绝对值为0.00033,不算大,(当然已经不符合下界计算值的定义,就是已经不适用 μ=0.162的修正系数了。)

高点的计算精度: G(169999999890) = 582601871;
因子分解: 169999999890 = 2 * 3 * 5 * 7 * 28051 * 28859 ,K(m)=2×4/3×6/5×28050/28049×28858/28857=3.200225;
高点计算值精度=3.200225×182085513/582601871=1.0001935;与区域下界计算值一样为正相对误差,而相对误差绝对值同样比较小。
可以看出相对误差修正系数 μ=0.162 对于区域内偶是素对的高点值、低点值的作用基本是相同的。

G(169999999800) = 486025770
G(169999999802) = 182063574
G(169999999808) = 182073175
G(169999999826) = 182061782
G(169999999856) = 182036894
G(169999999882) = 182042732
G(169999999888) = 182056305
     G(169999999890) = 582601871---- 最高
G(169999999892) = 182038044
G(169999999924) = 182051818
G(169999999948) = 182051948
G(169999999964) = 182052662
G(169999999976) = 182047705
G(169999999984) = 182044870
G(170000000012) = 182055620
G(170000000026) = 182043520
G(170000000042) = 182055398
G(170000000048) = 182049255
G(170000000054) = 182073739
G(170000000074) = 182043385
G(170000000084) = 182047257
G(170000000108) = 182054989
G(170000000122) = 182051725
   G(170000000138) = 182025062 ---- 最低
G(170000000152) = 182035861
G(170000000158) = 182035878
G(170000000164) = 182046017
G(170000000174) = 182042743
G(170000000182) = 182054822
G(170000000200) = 254489657

 楼主| 发表于 2018-12-5 21:11 | 显示全部楼层
本帖最后由 愚工688 于 2018-12-5 13:36 编辑


可以从我的1楼起的实际计算实例中看出, μ=0.21作为连乘式计算值的相对误差的修正,能够适用于M>5的任意偶数的下界计算值的计算;
若需要计算值的精度具有比较高的要求,则可以分区使用不同的修正系数。
比如,使用 μ=0.162的修正系数对用素数连乘式方法的偶数下界计算值的计算的范围是比较宽广的,我计算的实例范围在1000亿到1600亿偶数的范围内,下界计算值inf(M) 都具有比较高的计算精度。
而到1700亿时偶数的下界计算值则不适用使用 μ=0.162的修正系数进行计算。
可以看出我曾经的阐述:
连乘式计算值的相对误差均值在偶数大于5万后偏离0位,在目前的能力可以计算的范围内(100万亿以下)逐渐趋向0.185附近的进程是缓慢的,并且随偶数的增大而越来越缓慢。这个现象是与实际的计算实例是相符的。
 楼主| 发表于 2018-12-18 22:35 | 显示全部楼层
因此,在计算1700亿以上的偶数的素对下界值时,有必要把相对误差的修正系数从μ=0.162提高到μ=0.165,才能够保证计算值略微的小于真值。

使用相对误差的修正系数 μ=0.165对1800亿偶数的下界值的计算实例:

G(180000000000) = 511669506;
inf( 180000000000 )≈  510542138.5 , Δ≈-0.002203 ,infS(m) = 191453301.93 , k(m)= 2.66667
G(180000000002) = 193598426;
inf( 180000000002 )≈  193178106.5 , Δ≈-0.002171 ,infS(m) = 191453301.93 , k(m)= 1.00901
G(180000000004) = 213685244;
inf( 180000000004 )≈  213219454.6 , Δ≈-0.002180 ,infS(m) = 191453301.93 , k(m)= 1.11369
G(180000000006) = 383751526;
inf( 180000000006 )≈  382906603.9 , Δ≈-0.002202 ,infS(m) = 191453301.93 , k(m)= 2
G(180000000008) = 199009553;
inf( 180000000008 )≈  198572314.7 , Δ≈-0.002197 ,infS(m) = 191453301.93 , k(m)= 1.03718
G(180000000010) = 255845764;
inf( 180000000010 )≈  255271069.3 , Δ≈-0.002246 ,infS(m) = 191453301.94 , k(m)= 1.33333
G(180000000012) = 460493720;
inf( 180000000012 )≈  459487924.7 , Δ≈-0.002184 ,infS(m) = 191453301.94 , k(m)= 2.4
G(180000000014) = 192082853;
inf( 180000000014 )≈  191638998.6 , Δ≈-0.002311 ,infS(m) = 191453301.94 , k(m)= 1.00097
G(180000000016) = 196891798;
inf( 180000000016 )≈  196468790.4 , Δ≈-0.002148 ,infS(m) = 191453301.94 , k(m)= 1.0262
G(180000000018) = 387755300;
inf( 180000000018 )≈  386897474.1 , Δ≈-0.002212 ,infS(m) = 191453301.94 , k(m)= 2.02085
G(180000000020) = 255833287;
inf( 180000000020 )≈  255271069.3 , Δ≈-0.002198 ,infS(m) = 191453301.95 , k(m)= 1.33333
G(180000000022) = 195487143;
inf( 180000000022 )≈  195057178.5 , Δ≈-0.002199 ,infS(m) = 191453301.95 , k(m)= 1.01882

计算式如下:
inf( 180000000000 ) = 1/(1+ .165 )*( 180000000000 /2 -2)*p(m) ≈ 510542138.5
inf( 180000000002 ) = 1/(1+ .165 )*( 180000000002 /2 -2)*p(m) ≈ 193178106.5
inf( 180000000004 ) = 1/(1+ .165 )*( 180000000004 /2 -2)*p(m) ≈ 213219454.6
inf( 180000000006 ) = 1/(1+ .165 )*( 180000000006 /2 -2)*p(m) ≈ 382906603.9
inf( 180000000008 ) = 1/(1+ .165 )*( 180000000008 /2 -2)*p(m) ≈ 198572314.7
inf( 180000000010 ) = 1/(1+ .165 )*( 180000000010 /2 -2)*p(m) ≈ 255271069.3
inf( 180000000012 ) = 1/(1+ .165 )*( 180000000012 /2 -2)*p(m) ≈ 459487924.7
inf( 180000000014 ) = 1/(1+ .165 )*( 180000000014 /2 -2)*p(m) ≈ 191638998.6
inf( 180000000016 ) = 1/(1+ .165 )*( 180000000016 /2 -2)*p(m) ≈ 196468790.4
inf( 180000000018 ) = 1/(1+ .165 )*( 180000000018 /2 -2)*p(m) ≈ 386897474.1
inf( 180000000020 ) = 1/(1+ .165 )*( 180000000020 /2 -2)*p(m) ≈ 255271069.3
inf( 180000000022 ) = 1/(1+ .165 )*( 180000000022 /2 -2)*p(m) ≈ 195057178.5

time start =21:40:16time end =21:58:54

显然,使用相对误差的修正系数 μ=0.165 不仅仅能够对1700亿、1800亿区域大偶数的下界值进行计算,并且同样能够计算更大范围的偶数,估计至少能够计算到2500亿区域大偶数的下界值,并且保持比较高的计算精度。
 楼主| 发表于 2018-12-20 21:30 | 显示全部楼层
使用相对误差的修正系数 μ=0.165,对对1900亿起连续偶数的素对下界值的计算实例:

G(190000000000) = 284684819;
inf( 190000000000 )≈  284090580.9 , Δ≈-0.002087 ,infS(m) = 201230828.14 , k(m)= 1.41176
G(190000000002) = 419603777;
inf( 190000000002 )≈  418713142.3 , Δ≈-0.002123 ,infS(m) = 201230828.14 , k(m)= 2.08076
G(190000000004) = 201655654;
inf( 190000000004 )≈  201232888.8 , Δ≈-0.002096 ,infS(m) = 201230828.15 , k(m)= 1.00001
G(190000000006) = 202843547;
inf( 190000000006 )≈  202427058.7 , Δ≈-0.002053 ,infS(m) = 201230828.15 , k(m)= 1.00594
G(190000000008) = 531041962;
inf( 190000000008 )≈  529943103.2 , Δ≈-0.002069 ,infS(m) = 201230828.15 , k(m)= 2.63351
G(190000000010) = 268876606;
inf( 190000000010 )≈  268313997.2 , Δ≈-0.002092 ,infS(m) = 201230828.15 , k(m)= 1.33336
G(190000000012) = 201663235;
inf( 190000000012 )≈  201235568.0 , Δ≈-0.002121 ,infS(m) = 201230828.15 , k(m)= 1.00002
G(190000000014) = 448549586;
inf( 190000000014 )≈  447592117.3 , Δ≈-0.002135 ,infS(m) = 201230828.16 , k(m)= 2.22427
G(190000000016) = 201668679;
inf( 190000000016 )≈  201230828.2 , Δ≈-0.002171 ,infS(m) = 201230828.16 , k(m)= 1
G(190000000018) = 213981999;
inf( 190000000018 )≈  213529622.2 , Δ≈-0.002114 ,infS(m) = 201230828.16 , k(m)= 1.06112
G(190000000020) = 537740920;
inf( 190000000020 )≈  536615541.8 , Δ≈-0.002093 ,infS(m) = 201230828.16 , k(m)= 2.66667
G(190000000022) = 248191664;
inf( 190000000022 )≈  247668711.6 , Δ≈-0.002107 ,infS(m) = 201230828.16 , k(m)= 1.23077

计算式 :
inf( 190000000000 ) = 1/(1+ .165 )*( 190000000000 /2 -2)*p(m) ≈ 284090580.9
inf( 190000000002 ) = 1/(1+ .165 )*( 190000000002 /2 -2)*p(m) ≈ 418713142.3
inf( 190000000004 ) = 1/(1+ .165 )*( 190000000004 /2 -2)*p(m) ≈ 201232888.8
inf( 190000000006 ) = 1/(1+ .165 )*( 190000000006 /2 -2)*p(m) ≈ 202427058.7
inf( 190000000008 ) = 1/(1+ .165 )*( 190000000008 /2 -2)*p(m) ≈ 529943103.2
inf( 190000000010 ) = 1/(1+ .165 )*( 190000000010 /2 -2)*p(m) ≈ 268313997.2
inf( 190000000012 ) = 1/(1+ .165 )*( 190000000012 /2 -2)*p(m) ≈ 201235568
inf( 190000000014 ) = 1/(1+ .165 )*( 190000000014 /2 -2)*p(m) ≈ 447592117.3
inf( 190000000016 ) = 1/(1+ .165 )*( 190000000016 /2 -2)*p(m) ≈ 201230828.2
inf( 190000000018 ) = 1/(1+ .165 )*( 190000000018 /2 -2)*p(m) ≈ 213529622.2
inf( 190000000020 ) = 1/(1+ .165 )*( 190000000020 /2 -2)*p(m) ≈ 536615541.8
inf( 190000000022 ) = 1/(1+ .165 )*( 190000000022 /2 -2)*p(m) ≈ 247668711.6

time start =17:32:53  time end =17:54:11 time use =
 楼主| 发表于 2018-12-22 10:21 | 显示全部楼层
如同10楼那样,验证一下1900亿的区域下界计算值的精度,验证范围为1900亿前后各100个偶数的素对真值。

区域下界计算值 ,infS( 190000000000 ) = 201230828.14,向上取整= 201230829,(见19#楼)
同样把中间素数对数量大于202000000的偶数删除,仅仅保留一个最大素对数量的偶数 G(190000000050) = 645307575---最大。
则区域下界计算值的精度 jdz = 201230829 /201638980 ≈0.997976,是比较高的计算精度。
因子分解:190000000050)=2×3×5×5×7×180952381; k(m)=2×(4/3)×(6/5)=3.2 ;
高位值精度=201230829×3.2/ 645307575=0.9978787,也是比较高的计算精度。

1900亿前后100个偶数的素对数量低位值与最大值:

G(189999999800) = 293374121
G(189999999802) = 201654796
G(189999999806) = 201652643
G(189999999808) = 201651437
G(189999999814) = 201784382
G(189999999824) = 201651845
G(189999999832) = 201734891
G(189999999842) = 201644827
G(189999999844) = 201661750
G(189999999862) = 201650300
G(189999999866) = 201703428
G(189999999872) = 201985356
G(189999999892) = 201652698
G(189999999914) = 201671796
G(189999999916) = 201659388
G(189999999922) = 201658205
  G(189999999932) = 201638980---最小
G(189999999934) = 201661345
G(189999999946) = 201658967
G(189999999964) = 201694881
G(189999999968) = 201679434
G(189999999974) = 201657442
G(189999999976) = 201651857
G(189999999986) = 201663695
G(189999999988) = 201696608
G(190000000004) = 201655654
G(190000000012) = 201663235
G(190000000016) = 201668679
G(190000000028) = 201663938
G(190000000048) = 201781943
  G(190000000050) = 645307575---最大
G(190000000054) = 201950022
G(190000000066) = 201670436
G(190000000072) = 201670301
G(190000000082) = 201655451
G(190000000084) = 201684775
G(190000000088) = 201683944
G(190000000094) = 201649719
G(190000000096) = 201647810
G(190000000108) = 201733875
G(190000000126) = 201654523
G(190000000142) = 201647517
G(190000000154) = 201659687
G(190000000172) = 201664901
G(190000000178) = 201648023
G(190000000200) = 573565767

count = 201, algorithm = 2, working threads = 2, time use 113.760 sec

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-21 22:58 , Processed in 0.090617 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表