数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 费尔马1

数学大家蔡家雄

[复制链接]
 楼主| 发表于 2019-4-9 05:40 | 显示全部楼层
蔡家雄 发表于 2019-4-8 21:02
但像如下的通式没什么意义:

已知:18^3+19^3+21^3= 28^3,所以

这样的是同源解,其实,最好的解就是蔡氏小定理,当今数学界您领先,没有其他人能够得出像蔡氏小定理的通解式!哈哈,这可不是吹牛啊!
 楼主| 发表于 2019-4-9 06:48 | 显示全部楼层
本帖最后由 费尔马1 于 2019-4-9 06:50 编辑
蔡家雄 发表于 2019-4-9 06:12
奇怪的是,我原来怎么也想不到用同源解(平凡解)来解:红树一题,

但是,如果我想到同源解(平凡解)的话, ...


蔡老师您好:你能解出蔡氏小定理,这是天意啊!实际上蔡氏小定理在欧拉时代就有这个猜想了,但是由于同次幂不定方程的难度,一直没有人能够解出。我也在这个题上努力了,但没有攻克啊!您的成功是我们中国人的骄傲!是人类又一次挑战自然科学的胜利!蔡氏小定理将来一定能遍布世界数学界,在数学史上留下光辉灿烂的一页!(不要理那些搞诽谤之人)
 楼主| 发表于 2019-4-9 07:09 | 显示全部楼层
本帖最后由 费尔马1 于 2019-4-9 07:25 编辑

数学归纳法有它的规则,同样,反证法也有它的规则:①假设原命题不成立;②在假设的基础上,推证出一个结果,这个结果恰恰与假设相反(自相矛盾),即证明原命题成立。
其规则步骤是:①假设……②就……
不能这样:一、假设……
二、①假设……就……;②假设……就……
注意,一个假设只能得出一个结果,不然就不是反证法!
 楼主| 发表于 2019-4-9 07:18 | 显示全部楼层
蔡家雄 发表于 2019-4-9 07:09
设 f(n) 是关于n的k次幂的多项式,(0

谢谢蔡老师关注并指点!
您的小定理,可以得出一个猜想:一个n次幂可以分为k个n次幂,n大于2。
您看看,蔡氏小定理二,含系数2,就是一个三次幂分为四个三次幂
 楼主| 发表于 2019-4-9 09:12 | 显示全部楼层
致诽谤者:你不要嫉妒别人,如果你有出类拔萃的文献,大家都会认可你是一位数学大家!
老师们说是不是这个道理啊!
发表于 2019-4-9 15:13 | 显示全部楼层
费尔马1 发表于 2019-4-9 09:12
致诽谤者:你不要嫉妒别人,如果你有出类拔萃的文献,大家都会认可你是一位数学大家!
老师们说是不是这个 ...

费尔马1先生。
依你的数学水平,起一个费尔马的名字,是对费尔马前辈的无礼!
而你胡说欧几里得证明有瑕疵是你对欧氏的不敬!

顺告数学大家蔡家雄,如此崇拜你的人还没搞懂欧几里得的证明,还在这胡说八道你如果坐视不管是不义(除非你也没搞懂时另当别论)!

点评

张益唐的那个证明的错误,我不会像其他人大书特书的,只是说:张益唐太幸运了!(美国数学天才奖)  发表于 2019-4-9 15:35
在本论坛,李明波几次指出华罗庚、陈景润的错误,但陈景润放弃了在外国的优越条件,回到祖国,在文化大革命时倍受折磨。我还可以说什么?  发表于 2019-4-9 15:28
 楼主| 发表于 2019-4-9 16:12 | 显示全部楼层
笑傲数学 发表于 2019-4-9 15:13
费尔马1先生。
依你的数学水平,起一个费尔马的名字,是对费尔马前辈的无礼!
而你胡说欧几里得证明有 ...

不知姓名的也许是官科的大师:你仔细看看论坛里叫什么网名的都有,只要不范法,叫什么网名都可以,这个与数学水平没有关系,如果你的网名叫毕达哥拉斯,丢番图,笛卡尔,阿基米德,牛顿……,没有人反对的。反而说你为了纪念、尊重这些老前辈。
我给你说实话吧,我是一个老百姓,天天打工干活度日,不是专业的数学人仕,也就算是业余爱好吧,水平有限,好者为乐罢了,请你不要嫉妒打压于我,你如果有权可以使我离开这个论坛,我也可以自动离开这个论坛(如果你容不下我)。
最重要的事情就是,你要亮出你的数学才华,最起码能够先解出我的任何一个帖子的数学题,再证明蔡氏小定理,蔡氏勾股数公式,……不然,你光说不干,站着说话不腰疼,算什么英雄?
如果你解不出题,以后莫怪我不回复啊!
 楼主| 发表于 2019-4-10 02:46 | 显示全部楼层
本帖最后由 费尔马1 于 2019-4-10 05:50 编辑

我说蔡家雄老师是一位数学大家,我说错了吗?当今世界上数学爱好者咱且不说,有那么多的数学家,请问,有哪位数学家能够提出并证明蔡氏小定理呢?(蔡氏小定理与费马大定理遥相呼应,其难度不小啊,当年欧拉没有解出)
再说了,如果有人明天证明了哥德巴赫猜想,那么他就是数学大家,老师们说是不是这个理啊!
 楼主| 发表于 2019-4-14 20:24 | 显示全部楼层
蔡家雄 发表于 2019-4-14 20:17
蔡氏小定理1   n 为任一正整数,

n^3+a^3+b^3= c^3 有正整数解。

蔡老师您好,您的成果非常棒!我猜想这样的式子有无穷个。包括三次幂以上的这样的式子。
谢谢老师!
 楼主| 发表于 2019-4-14 20:31 | 显示全部楼层
本帖最后由 费尔马1 于 2019-4-14 20:35 编辑
蔡家雄 发表于 2019-4-14 20:17
蔡氏小定理1   n 为任一正整数,

n^3+a^3+b^3= c^3 有正整数解。


蔡老师,您的小定理3,虽然有特解,但是还没有通解式,是吗?我的意思是,小定理3没有像小定理1那样的参数解。您说,是不是啊!
我建议,就用小定理1作为蔡氏小定理,当然,也可以叫“蔡氏大定理”,因为你的这个小定理确实是与费马大定理遥相呼应,而且欧拉没有解出。您就叫“蔡氏大定理”,数学界也不会有人反对的。

点评

1, a, b, c 各自乘以 n, 就是:通式,  发表于 2019-4-14 20:55
1, a, b, c 各自乘以 n, 就是:通式,  发表于 2019-4-14 20:54
1, a, b, c 各自乘以 n, 就是:通式,  发表于 2019-4-14 20:35
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-16 13:21 , Processed in 0.107216 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表