- \!\(\*OverscriptBox["b", "_"]\) = b = -1;
- \!\(\*OverscriptBox["c", "_"]\) = c = 1;
- \!\(\*OverscriptBox["v", "_"]\) = 1/v;
- \!\(\*OverscriptBox["u", "_"]\) = 1/u;
- k[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
- SquareDistance[a_, b_] := (a - b) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["Jd", "_"]\)[k1_, a1_, k2_, a2_] := -((a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(
- k1 - k2));(*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
- Waixin[a_, b_, c_] := (a
- \!\(\*OverscriptBox["a", "_"]\) (b - c) + b
- \!\(\*OverscriptBox["b", "_"]\) (c - a) + c
- \!\(\*OverscriptBox["c", "_"]\) (a - b) )/(
- \!\(\*OverscriptBox["a", "_"]\) (b - c) +
- \!\(\*OverscriptBox["b", "_"]\) (c - a) +
- \!\(\*OverscriptBox["c", "_"]\) (a - b));
- \!\(\*OverscriptBox["Waixin", "_"]\)[a_, b_, c_] := -((a
- \!\(\*OverscriptBox["a", "_"]\) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) + b
- \!\(\*OverscriptBox["b", "_"]\) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\)) + c
- \!\(\*OverscriptBox["c", "_"]\) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) )/(
- \!\(\*OverscriptBox["a", "_"]\) (b - c) +
- \!\(\*OverscriptBox["b", "_"]\) (c - a) +
- \!\(\*OverscriptBox["c", "_"]\) (a - b)));
- XiangjiaoxuanLianxin[o1_, a_, o2_, b_] := (a
- \!\(\*OverscriptBox["a", "_"]\) - b
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) o2 + b
- \!\(\*OverscriptBox["o2", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) o1 - a
- \!\(\*OverscriptBox["o1", "_"]\) +
- \!\(\*OverscriptBox["o2", "_"]\) o1 - o2
- \!\(\*OverscriptBox["o1", "_"]\))/(2 (
- \!\(\*OverscriptBox["o2", "_"]\) -
- \!\(\*OverscriptBox["o1", "_"]\)));(*圆 (O1,A)与圆 (O2,B)连心线与公共弦的交点*)
- \!\(\*OverscriptBox["XiangjiaoxuanLianxin", "_"]\)[o1_, a_, o2_,
- b_] := (a
- \!\(\*OverscriptBox["a", "_"]\) - b
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) o2 + b
- \!\(\*OverscriptBox["o2", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) o1 - a
- \!\(\*OverscriptBox["o1", "_"]\) + o2
- \!\(\*OverscriptBox["o1", "_"]\) -
- \!\(\*OverscriptBox["o2", "_"]\) o1)/(2 (o2 - o1));
- a = Jd[v^2, b, u^2, c];
- \!\(\*OverscriptBox["a", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[v^2, b, u^2, c]; p = Jd[v, b, u, c];
- \!\(\*OverscriptBox["p", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[v, b, u, c];(*BA直线的复斜率等于v^2*)
- d = Jd[w^2, a, 1, c];
- \!\(\*OverscriptBox["d", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[w^2, a, 1, c];(*DA直线的复斜率等于w^2*)
- f = Jd[w, p, 1, c];
- \!\(\*OverscriptBox["f", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[w, p, 1, c]; g = Jd[-w, p, 1, c];
- \!\(\*OverscriptBox["g", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-w, p, 1, c];
- m = Jd[-1, f, -w, d];
- \!\(\*OverscriptBox["m", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-1, f, -w, d]; n = Jd[-1, g, w, d];
- \!\(\*OverscriptBox["n", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-1, g, w, d];
- q = Waixin[a, b, c];
- \!\(\*OverscriptBox["q", "_"]\) =
- \!\(\*OverscriptBox["Waixin", "_"]\)[a, b, c];
- Simplify[{1, a,
- \!\(\*OverscriptBox["a", "_"]\), p,
- \!\(\*OverscriptBox["p", "_"]\), , f,
- \!\(\*OverscriptBox["f", "_"]\), g,
- \!\(\*OverscriptBox["g", "_"]\)}]
- Simplify[{2, m,
- \!\(\*OverscriptBox["m", "_"]\), n,
- \!\(\*OverscriptBox["n", "_"]\), , k[m, n], k[m, p]}]
- Simplify[{3, q,
- \!\(\*OverscriptBox["q", "_"]\)}]
- Simplify[Solve[{SquareDistance[q, z] == SquareDistance[q, a],
- SquareDistance[m, z] == SquareDistance[m, f]}, {z,
- \!\(\*OverscriptBox["z", "_"]\)}]](*求两圆切点*)
- Simplify[Solve[{SquareDistance[q, z] == SquareDistance[q, a],
- SquareDistance[n, z] == SquareDistance[n, g]}, {z,
- \!\(\*OverscriptBox["z", "_"]\)}]]
- z1 = XiangjiaoxuanLianxin[q, a, m, f]; z2 =
- XiangjiaoxuanLianxin[q, a, n, g];(*验证两圆切点*)
- Simplify[{z1, z2}]
- Simplify[{4, q - b, SquareDistance[q, b], , m - f, , n - g, ,
- m - q, (2 v^3)/(-u^2 + v^2) I - (m - f) I}]
- Simplify[{k[q, b], Sqrt[k[q, b]], k[m, q], k[n, q]}]
- (*Simplify[{m-f,,q,(m-f-q)^2,SquareDistance[q,m],,n-g,,q,(n-g-q)^2,\
- SquareDistance[q,n]}]*)
复制代码 |