|
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1 |
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||
设 0≤p,q≤1 ,p+q=1 ,m,n 是正整数,求证:(1-p^m)^n+(1-q^n)^m≥1
| ||