数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: ysr

对偶数2A其哥德巴赫猜想素数和对中的最小素数是几?为什么

[复制链接]
 楼主| 发表于 2020-9-17 02:09 | 显示全部楼层
40000   10     389
就是说偶数40000的方根200内有10个素数可以构成哥德巴赫猜想解的素数和对,就是网友说的有10个“小根拆”。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-9-17 02:43 | 显示全部楼层
一切金钱荣誉,和肉体一样,终究会灰飞烟灭,只有真理永恒!
即使漂浮在太空的尸体,虽然温度寒冷,不会有细菌繁殖不能腐烂,但宇宙辐射的打磨,将会分解尸体,最后仍然是变成尘埃。
回复 支持 反对

使用道具 举报

发表于 2020-9-17 18:47 | 显示全部楼层
孪中数p+15 是 孪中数p+3 的4/3倍,

孪中数p+105 也是 孪中数p+15 的4/3倍,估计,

孪中数p+105 两两相加,能遍历覆盖>=10^3的偶数。
回复 支持 反对

使用道具 举报

发表于 2020-9-17 18:48 | 显示全部楼层
孪中数p+15 是 孪中数p+3 的4/3倍,

孪中数p+105 也是 孪中数p+15 的4/3倍,估计,

孪中数p+105 两两相加,能遍历覆盖>=10^3的偶数。
回复 支持 反对

使用道具 举报

发表于 2020-9-17 18:53 | 显示全部楼层
孪中数p+15 是 孪中数p+3 的4/3倍,

孪中数p+105 也是 孪中数p+15 的4/3倍,估计,

孪中数p+105 两两相加,能遍历覆盖>=10^3(1千)的偶数。
回复 支持 反对

使用道具 举报

发表于 2020-9-17 20:19 | 显示全部楼层
在相同大的范围内,

孪中数p+15 是 孪中数p+3 的4/3倍,

孪中数p+105 也是 孪中数p+15 的4/3倍,估计,

孪中数p+105 两两相加,能遍历覆盖>=10^3(1千)的偶数。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-9-17 20:53 | 显示全部楼层
“在相同大的范围内,

孪中数p+15 是 孪中数p+3 的4/3倍,

孪中数p+105 也是 孪中数p+15 的4/3倍,估计,

孪中数p+105 两两相加,能遍历覆盖>=10^3(1千)的偶数。”

命题不错,应该是成立的,需要证明。应该容易证明吧?最后一句的证明感觉更容易些,哈哈!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-9-17 20:55 | 显示全部楼层
40000的方根为200,方根内有10个总数有389个:40000=11+ 39989
17+ 39983
29+ 39971
47+ 39953
71+ 39929
113+ 39887
131+ 39869
137+ 39863
173+ 39827
179+ 39821
239+ 39761
251+ 39749
281+ 39719
419+ 39581
431+ 39569
449+ 39551
479+ 39521
491+ 39509
557+ 39443
617+ 39383
641+ 39359
659+ 39341
677+ 39323
683+ 39317
761+ 39239
773+ 39227
809+ 39191
839+ 39161
881+ 39119
887+ 39113
911+ 39089
953+ 39047
977+ 39023
1097+ 38903
1109+ 38891
1217+ 38783
1277+ 38723
1289+ 38711
1301+ 38699
1307+ 38693
1361+ 38639
1433+ 38567
1439+ 38561
1499+ 38501
1553+ 38447
1607+ 38393
1667+ 38333
1697+ 38303
1811+ 38189
1823+ 38177
1847+ 38153
1931+ 38069
2003+ 37997
2111+ 37889
2129+ 37871
2153+ 37847
2309+ 37691
2351+ 37649
2357+ 37643
2381+ 37619
2393+ 37607
2411+ 37589
2591+ 37409
2621+ 37379
2663+ 37337
2687+ 37313
2693+ 37307
2777+ 37223
2801+ 37199
2819+ 37181
2861+ 37139
2903+ 37097
2939+ 37061
3167+ 36833
3191+ 36809
3209+ 36791
3221+ 36779
3251+ 36749
3323+ 36677
3329+ 36671
3347+ 36653
3371+ 36629
3413+ 36587
3449+ 36551
3527+ 36473
3533+ 36467
3617+ 36383
3659+ 36341
3701+ 36299
3863+ 36137
3917+ 36083
3989+ 36011
4001+ 35999
4007+ 35993
4049+ 35951
4229+ 35771
4241+ 35759
4253+ 35747
4271+ 35729
4397+ 35603
4409+ 35591
4457+ 35543
4463+ 35537
4493+ 35507
4637+ 35363
4673+ 35327
4721+ 35279
4733+ 35267
4799+ 35201
4871+ 35129
4889+ 35111
4919+ 35081
4931+ 35069
4973+ 35027
5039+ 34961
5051+ 34949
5081+ 34919
5087+ 34913
5153+ 34847
5237+ 34763
5261+ 34739
5279+ 34721
5297+ 34703
5333+ 34667
5351+ 34649
5387+ 34613
5393+ 34607
5417+ 34583
5501+ 34499
5531+ 34469
5639+ 34361
5717+ 34283
5741+ 34259
5783+ 34217
5843+ 34157
5939+ 34061
5981+ 34019
6089+ 33911
6143+ 33857
6173+ 33827
6203+ 33797
6287+ 33713
6353+ 33647
6359+ 33641
6521+ 33479
6653+ 33347
6689+ 33311
6917+ 33083
6947+ 33053
6971+ 33029
6977+ 33023
7001+ 32999
7013+ 32987
7043+ 32957
7211+ 32789
7229+ 32771
7283+ 32717
7307+ 32693
7559+ 32441
7577+ 32423
7589+ 32411
7673+ 32327
7691+ 32309
7703+ 32297
7817+ 32183
7841+ 32159
7883+ 32117
7901+ 32099
7937+ 32063
7949+ 32051
8009+ 31991
8093+ 31907
8117+ 31883
8231+ 31769
8273+ 31727
8609+ 31391
8663+ 31337
8681+ 31319
8693+ 31307
8741+ 31259
8747+ 31253
8753+ 31247
8807+ 31193
8819+ 31181
8849+ 31151
8861+ 31139
9029+ 30971
9059+ 30941
9161+ 30839
9227+ 30773
9293+ 30707
9311+ 30689
9323+ 30677
9461+ 30539
9491+ 30509
9533+ 30467
9551+ 30449
9677+ 30323
9803+ 30197
9839+ 30161
9887+ 30113
9929+ 30071
9941+ 30059
10079+ 29921
10133+ 29867
10163+ 29837
10181+ 29819
10211+ 29789
10247+ 29753
10259+ 29741
10331+ 29669
10337+ 29663
10427+ 29573
10433+ 29567
10463+ 29537
10499+ 29501
10589+ 29411
10601+ 29399
10613+ 29387
10667+ 29333
10799+ 29201
10847+ 29153
10853+ 29147
10937+ 29063
10973+ 29027
10979+ 29021
11351+ 28649
11369+ 28631
11393+ 28607
11483+ 28517
11597+ 28403
11681+ 28319
11717+ 28283
11789+ 28211
11903+ 28097
11969+ 28031
11981+ 28019
12107+ 27893
12149+ 27851
12197+ 27803
12227+ 27773
12251+ 27749
12263+ 27737
12347+ 27653
12473+ 27527
12491+ 27509
12569+ 27431
12671+ 27329
12809+ 27191
12821+ 27179
12893+ 27107
12923+ 27077
12941+ 27059
12983+ 27017
13007+ 26993
13049+ 26951
13109+ 26891
13121+ 26879
13151+ 26849
13187+ 26813
13217+ 26783
13241+ 26759
13313+ 26687
13331+ 26669
13367+ 26633
13487+ 26513
13499+ 26501
13577+ 26423
13613+ 26387
13679+ 26321
13691+ 26309
13751+ 26249
13763+ 26237
13829+ 26171
13859+ 26141
13901+ 26099
13997+ 26003
14057+ 25943
14081+ 25919
14087+ 25913
14153+ 25847
14159+ 25841
14207+ 25793
14321+ 25679
14327+ 25673
14411+ 25589
14423+ 25577
14537+ 25463
14543+ 25457
14561+ 25439
14591+ 25409
14627+ 25373
14633+ 25367
14657+ 25343
14699+ 25301
14747+ 25253
14753+ 25247
14771+ 25229
14831+ 25169
14879+ 25121
14969+ 25031
15077+ 24923
15083+ 24917
15149+ 24851
15233+ 24767
15329+ 24671
15377+ 24623
15467+ 24533
15473+ 24527
15527+ 24473
15581+ 24419
15629+ 24371
15641+ 24359
15671+ 24329
15683+ 24317
15749+ 24251
15761+ 24239
15797+ 24203
15803+ 24197
15887+ 24113
15923+ 24077
15971+ 24029
16007+ 23993
16091+ 23909
16127+ 23873
16187+ 23813
16253+ 23747
16433+ 23567
16451+ 23549
16553+ 23447
16631+ 23369
16661+ 23339
16673+ 23327
16703+ 23297
16811+ 23189
16883+ 23117
16901+ 23099
16937+ 23063
16943+ 23057
16979+ 23021
17027+ 22973
17093+ 22907
17099+ 22901
17123+ 22877
17183+ 22817
17189+ 22811
17231+ 22769
17291+ 22709
17321+ 22679
17387+ 22613
17489+ 22511
17519+ 22481
17609+ 22391
17657+ 22343
17729+ 22271
17807+ 22193
17891+ 22109
17909+ 22091
17921+ 22079
17987+ 22013
18089+ 21911
18119+ 21881
18149+ 21851
18233+ 21767
18287+ 21713
18353+ 21647
18401+ 21599
18413+ 21587
18443+ 21557
18593+ 21407
18617+ 21383
18731+ 21269
18773+ 21227
18899+ 21101
18911+ 21089
19037+ 20963
19079+ 20921
19121+ 20879
19211+ 20789
19319+ 20681
19373+ 20627
19457+ 20543
19559+ 20441
19739+ 20261
19751+ 20249
19853+ 20147
19937+ 20063
19949+ 20051
19979+ 20021
回复 支持 反对

使用道具 举报

发表于 2020-9-17 20:57 | 显示全部楼层
孪中数p+105 两两相加,能遍历覆盖>=10^3(1千)的偶数。”

命题不错,可能是成立的,需要验证
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-9-17 21:03 | 显示全部楼层
蔡家雄 发表于 2020-9-17 12:57
孪中数p+105 两两相加,能遍历覆盖>=10^3(1千)的偶数。”

命题不错,可能是成立的,需要验证。

这个容易验证,试试吧!等会儿!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-24 07:14 , Processed in 0.096295 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表