数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{批蠢疯顽瞎不住啼的}N_{\infty}\ne\varnothing\textbf{猿声}\)

[复制链接]
发表于 2024-6-25 17:23 | 显示全部楼层
elim 发表于 2024-6-25 09:13
\((0)\;\;A_m:=\{k\in\mathbb{N}: k> m\},\;N_{\infty}:=\displaystyle\bigcap_{n=1}^\infty A_n.\)
\((1) ...


e大掌门人,根据你所给集合列是单减集合列,应用集合交的吸收律(或周氏定义1.8)我们有\(N_n=\displaystyle\bigcap_{k=1}^n=A_n\),根据e大掌门的“臭便”思想【\(\forall m∈N\)有\(N_∞=N_∞\cap N=N_∞\cap\displaystyle\bigcup_{m=1}^∞ A_m^c=\displaystyle\bigcup_{m=1}^∞ (A_∞\cap A_m^c)=\phi\)】立即有\(N_1=N_2=…=N_∞=\phi\)。于是\(A_1=A_2=……=A_∞=\phi\). e大掌门你的单减集合列存在吗?呜乎!半年地忙活,竟然遭遇e大掌门人的骗局!真是可悲、可叹、可耻、可恶!
回复 支持 反对

使用道具 举报

发表于 2024-6-26 07:20 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-6-26 18:13 编辑
elim 发表于 2024-6-25 22:26
\(N_k = \displaystyle\bigcap_{m=1}^k A_m = A_k \ne\varnothing\). 蠢痴从
\(N_{\infty}=N_{\infty}\cap ...



elim论证单减集合列的极限集\(N_∞=\phi\)的“理论”依据是\(\displaystyle\bigcup_{m=1}^∞ A_m^c=N\)。在这个理论依据下,elim对\(N_∞\)作如下变形【\(N_∞=N_∞\cap N\)\(=N_∞\cap\displaystyle\bigcup_{m=1}^∞ A_m^c\)\(=\displaystyle\bigcup_{m=1}^∞ (N_∞\cap A_m^c)=\phi\)。】e大掌门人的这个“发明”相当了得,利用它可“证明”任何非空集合B等于空集,从而导致\(\color{red}{若B≠\phi,则B=\phi}\)悖论。现按elim的“臭便”思维方式证明如下:
【证明】:因为\(B≠\phi\)(已知);
\(N=\displaystyle\bigcup_{m=1}^∞ A_m^c\)(e氏发明);所以,
\(B=B\cap N\)(定理:若\(A\subset B,则A=A\cap B\));所以:
\(B=B\cap\displaystyle\bigcup_{m=1}^∞ A_m^c\)(恒等变形);由于\(\displaystyle\bigcup_{m=1}^∞ A_m^c\)\(=(\displaystyle\bigcap_{m=1}^∞ A_m)^c\);所以
当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时,\(\displaystyle\bigcup_{m=1}^∞ A_m^c=N\)〔(德摩根定律(De Morgan's laws)〕;所以:\(B=B\cap N=B\cap\displaystyle\bigcup_{m=1}^∞ A_m^c=B\cap\phi=\phi\)。所以命题\(\color{red}{若B≠\phi,则B=\phi}\)得证.【证毕】
e大掌门现在你明白【\(N_∞=N_∞\cap N=\displaystyle\bigcup_{n=1}^∞(N_∞\cap A_n^c)=\phi\)是
直接导致\(A_1=A_2=……=N_∞=\phi\)的根本原因了吧?
回复 支持 反对

使用道具 举报

发表于 2024-6-26 18:15 | 显示全部楼层
elim 发表于 2024-6-26 11:13
蠢疯说:由于\(\displaystyle\bigcup_{m=1}^\infty A_m^c =\big(\bigcap_{m=1}^\infty A_m\big)^c\)
所以 ...


【勘误】原帖中〖当仅且当\((\displaystyle\bigcap_{m=1}^∞ A_m)^c)=\phi\)时〗属笔误。正确的应是〖当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时〗,谢谢帮我勘误,原帖己改过来了。
回复 支持 反对

使用道具 举报

发表于 2024-6-27 16:16 | 显示全部楼层
elim 发表于 2024-6-27 00:37
勘误改过来。\(\displaystyle B=B\cap\mathbb{N}=B\cap\bigcup_{n=1}^\infty A_n^c \color{red}{\overset{? ...

你以为你的种好?用你野种、杂种思维方式,可证得\(\mathbb{N}^+=\phi\)!(参见《欢迎文明赐教,拒绝青楼艳词》主帖!)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-28 11:23 | 显示全部楼层
\((0)\;\;\)对任意自然数\(m,\;\,m\in A_m^c.\;\color{grey}{(A_m^c:=\{n\in\mathbb{N}: n\le m\})}\)
\((1)\;\;\)对任意自然数\(m,\;\, A_m^c\subset\displaystyle\bigcup_{n=1}^\infty A_n^c\)
\(\qquad\)只有孬种不认(0) 和 (1).
\(\therefore\;\;\mathbb{N}\subset\displaystyle\bigcup_{n=1}^\infty A_n^c\) (因为(0),(1)说明任何自然数都是所论并集的成员)
但显然\(\mathbb{N}\supset\displaystyle\bigcup_{n=1}^\infty A_n^c\), 所以 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\),
只有孬种才否认这个只需\(A_n\)的定义和集论基本概念就证得的结果.

孬种的定义千头万绪, 但归根到底, 大半年弄不懂几十年前一夜
就该弄懂的基本概念, 还那么积极地丢人现眼之人, 非孬种莫属.
把蠢疯顽瞎的问题归咎为种孬, 是说孬种反数学已经尽力了, 但
很无辜,不成功,种太孬。
回复 支持 反对

使用道具 举报

发表于 2024-6-28 18:52 | 显示全部楼层
elim 发表于 2024-6-28 11:23
\((0)\;\;\)对任意自然数\(m,\;\,m\in A_m^c.\;\color{grey}{(A_m^c:=\{n\in\mathbb{N}: n\le m\})}\)
\(( ...

什么资深八股党人四则运算都缺除法?}\)  ...234
你以为你的种好?按你野种、杂种的思维方式,可证得\(\mathbb{N}^+=\phi\)!(参见《欢迎文明赐教,拒绝青楼艳词》主帖!)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-28 21:36 | 显示全部楼层
春风晚霞 发表于 2024-6-28 03:02
由\(\{A_k\}\)的通项\(A_k=\{k-1,k+2,k+3,…\}\)知,\(A_k^c=\{1,2,3,…k\}\)易证集合列\(\{A_k^c\ ...


1) 证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均为无效的孬种方式。
2) 在\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=B\cap\varnothing\) 中取\(B=\mathbb{N}\) 得 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\varnothing\) 谬论.
\(\quad\)相信蠢疯也不想这么丢人现眼,但种孬由不得自己对吧?说我\(\displaystyle\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\)
\(\quad\)的证明刺激了蠢疯脆弱的神经, 犯了此孬来也不是不可以,根源还在孬种种孬。
3) 孬种讲数理逻辑? 能看懂下面这段谓词演算吗?
    \(\forall m\in\mathbb{N}\,(m\in A_m^c\subset\displaystyle\bigcup_{n=1}^\infty A_n^c)\implies \big(\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\big)\overset{\text{德摩根}}{\implies} (N_{\infty}=\varnothing)\)
回复 支持 反对

使用道具 举报

发表于 2024-6-29 11:14 | 显示全部楼层
elim 发表于 2024-6-28 21:36
1) 证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均 ...


elim真不是男人,\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时,\(N=\displaystyle\bigcup_{m=1}^∞ A_m^c\)出自你的【证明:设\(\Omega=\mathbb{N}^+\),\(A_k=\{m\in\mathbb{N}^+:k<m\}\),\(A_k^c=\{m\in\mathbb{N}^+:m≤k\}\),
根据德摩根定理\(\displaystyle\bigcap_{k=1}^∞ A_k=\)\(\displaystyle\bigcup_{k=1}^∞\{1,2,3,…\})^c=\)\(\mathbb{N}^+)^c=\phi\)】嘛!
你这个证明“精华”之处不就是\(\displaystyle\bigcup_{k=1}^∞ A_k^c=\displaystyle\bigcap_{k=1}^∞ A_k)^c\color{red}{=\phi}\)吗?根据等量的传递性不就就是\(\displaystyle\bigcup_{k=1}^∞ A_k^c\color{red}{=\phi}\)吗?这个根本就不成立的等式正是你【无穷交就是一种骤变】结果!如果承认这个根本就不成立的等式,那你就得承认\(\color{red}{(\mathbb{N}^+)^c=\phi}\)这个荒唐的结果。那你就得承认\(B=B\cap N=B\cap\displaystyle\bigcup_{m=1} A_m^c=B\cap\phi\)这个事实。那你就得承认你成功地“证明”\(\forall B\subseteq N\)都有\(B=\phi\)!如果你不承认那个根本就不成立的等式,那你就得承认你用德摩根律证明\(N_∞=\phi\)是错误的!如果你都不承认,那只能说明你是孬种,是野种、是流氓、是无赖!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-29 11:29 | 显示全部楼层
蠢疯就是个孬种,什么叫 \(\displaystyle\bigcap_{k=1}A_k=\varnothing\) 时 \(\mathbb{N}=\displaystyle\bigcup_{k=1}^\infty A_k^c\)? 我拿 \(\displaystyle\bigcap_{k=1}A_k=\varnothing\) 作假设用过吗?\(B\cap\displaystyle\bigcup_{k=1}^\infty A_k^c=B\cap\bigcap_{k=1}^\infty A_m\)不是蠢氏孬种传递还能是什么?
我说你蠢疯顽瞎是个老孬种怎么了?你那么笨那么孬就没啥责任了呀!都怪某个更老的孬种把你生了出来么。你很无辜呀。对不对?
回复 支持 反对

使用道具 举报

发表于 2024-6-30 20:38 | 显示全部楼层
elim 发表于 2024-6-28 21:36
1) 证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均 ...


       1) 证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均为无效的孬种方
       elim先生:为什么【证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均为无效的孬种方式】?是因为周民强的定义是孬种、还是Cantor的交集的运算规律(\(若A\subseteq B,则A=A\cap B\)是孬种?还是Cantor的超穷数理论是孬种?还是因没有用你的“臭便”而致其是孬种?你说不出无效的原因,你凭什么指责这些证明是【无效的孬种形式】?这难道就是你们“现代数学”的”数理逻辑”吗?

       2)、在\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=B\cap\varnothing\) 中取\(B=\mathbb{N}\) 得 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\varnothing\) 谬论.
\(\quad\)相信蠢疯也不想这么丢人现眼,但种孬由不得自己对吧?说我\(\displaystyle\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\)
\(\quad\)的证明刺激了蠢疯脆弱的神经, 犯了此孬来也不是不可以,根源还在孬种种孬
       elim先生,难道你真的看不懂这是对你最近发表的\(N_∞=N_∞\cap N\)\(=N_∞\cap\displaystyle\bigcup\_{m=1}^∞ A_m^c=\phi\)创新表达式的直接否定吗?暂时不管Cantor的种是不是孬种,也暂时不菅在Cantor集合论框架下求得的\(N_∞≠\phi\)是否有效。既然Cantor集合论方法与elim先生的创新方法存在不可忽视的差异,那就有必要引起差异的原因作以分析。初分析知以下两个方面
:①、elim的自然数\(N_e\)是Cator自然数集\(N_c\)的真子集(即\(N_e\subset N_c\);②、\(N_∞\cap A_m^c=\phi\nRightarrow N_∞=\phi\)(对①、②的祥尽今分析放在3))。如果无视①②对求单减集合列极限集的影响,那么必将导致\(\forall B\supseteq\displaystyle\bigcup_{m=1}A_m^c都有B=\phi\).现对这个命题证明如下:
【证明】:设\(B_k=A_k\),易证
\(B=\displaystyle\bigcup_{m=1}^∞ A_m^c\),所以\(B=B\cap B=\displaystyle\bigcup_{m=1}^∞(A_m\cap A_m^c)=\displaystyle\bigcup_{m=1}^∞(\phi)=\phi\)!【证毕】\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=B\cap\varnothing\) 中取\(B=\mathbb{N}\) 得 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\varnothing\) 谬论.并非是你的\(N_∞=N_∞\cap N=\phi\)【刺激了蠢疯脆弱的神经, 犯了此孬来也不是不可以,根源还在孬种种孬】,而是警示你的创新等式并不完备!

       3) 孬种讲数理逻辑? 能看懂下面这段谓词演算吗?
    \(\forall m\in\mathbb{N}\,(m\in A_m^c\subset\displaystyle\bigcup_{n=1}^\infty A_n^c)\implies \big(\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\big)\overset{\text{德摩根}}{\implies} (N_{\infty}=\varnothing\)
       elim先生的这段谓词演译的确演译严谨,有理有据。不过也确实存在2)中提及的两个问题:①\(N_e\)系统拒接受康托尔超穷数。所以在\(N_e\)系统中从而导致皮亚诺公理在逻辑确定的数\(\displaystyle\lim_{n→∞}n无后继,直接导致在N_e中,N_∞=\phi\)的错误结论;②由\(A\cap B=\phi\)既推\(A=\phi\)也推不出\(B=\phi\)的例子较多,除2)所举的\(A_k\cap A_k^c=\phi\)外,凡满足A非空,B非空但\(A\cap B=\phi\)的集合A,B都是其例。所以由\(N_∞\cap A_m^c=\phi\Rightarrow N_∞=\phi\)有待商榷。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-14 06:29 , Processed in 0.090384 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表