数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{red}{\underset{n\to\infty}{\lim}n\textbf{ 不是自然数}}\)

[复制链接]
发表于 2025-5-8 16:50 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

发表于 2025-5-8 17:01 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

发表于 2025-5-8 17:03 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

发表于 2025-5-8 17:05 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

发表于 2025-5-8 17:07 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

发表于 2025-5-8 17:30 | 显示全部楼层

elim,你那么有理,还玩发了删,删了又发的把戏干啥?留下来让大家看看岂不更好!
命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

发表于 2025-5-8 17:32 | 显示全部楼层

elim,你那么有理,还玩发了删,删了又发的把戏干啥?留下来让大家看看岂不更好!
命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

发表于 2025-5-8 17:49 | 显示全部楼层

elim,你要点脸好不好!我上千次回答你\(\displaystyle\lim_{n \to \infty} n\)是自然数!你总把自己囿于“狗要吃屎”的框架,你要我怎样回答你?你觉得你的“要吃狗屎”认知那么有理,还玩发了删,删了又发的把戏干啥?留下来让大家看看岂不更好!

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明;】设\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
\begin{split}
&\because\quad v\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】

回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-5-8 18:29 | 显示全部楼层
本 tread 中脑袋被驴踢伤的孬种驴滚187贴, 楼主共回9贴
蠢疯不敢说 \(\lim n\) 是啥, 却还无耻继续畜生
不如地驴滚 \(\displaystyle\lim_{n\to\infty}n\) 议题? 哈哈哈哈种真孬

\(\aleph_0\)是基数大小意义下\(\mathbb{N}\)的上确界, \(\omega\)是序数
大小意义下\(\mathbb{N}\)的上确界. 因\(\aleph_0=\aleph_0+1\)反
皮亚诺, \(\aleph_0\)非自然数. 若\(\omega\)为自然数, 则其后
继是比\(\,\mathbb{N}\,\)的上确界更大的自然数. 这是论断
\(\omega=\small\sup\mathbb{N}\,\)的否定. 故\(\,{\small\aleph_0,\,}\omega\,\)都不是自然数,
不是\(\small\;\mathbb{N}\,\)的元.
孬种想把 \(\lim n\) 看作\(\aleph_0\)还是\(\omega\)?或者分析
中反皮亚诺的\(\,\small\infty=\infty+250\)?
回复 支持 反对

使用道具 举报

发表于 2025-5-8 18:59 | 显示全部楼层

elim你还要点脸不?把你他娘宿帖重发次数计上,你上千次胡闹,我已回复上千次。你宿帖频频删、发也难掩你屈词穷,内心空虚。你的所有命题,离开你“狗要吃屎”事实和“要吃狗屎”的论证都是不成立的!是非对错难道你自己就没有一点逼数?
关于\(v=\displaystyle\lim_{n \to \infty}n\)是啥的问题,我n次引用康托尔的“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体”回复了你n次\(v=\displaystyle\lim_{n \to \infty}n\)是自然数(即\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!你他娘的凭什么说我【居然回答不了\(\displaystyle\lim_{n \to \infty}n\)是啥的问题】?在n次回答\(\displaystyle\lim_{n \to \infty}n\)是啥的同时,我也根据\(\omega、\aleph_0\)、上确界的定义回答了你\(\omega、\aleph_0\)均非\(\mathbb{N}\)的上确界。并且也回答了\(\displaystyle\lim_{n \to \infty}n\)是无穷大自然数,并非最大自然数。理由是在现行的教科书中没有最大无穷大、较大无穷大、最小无穷大之说。对于你所说的【\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)矛盾重重】;【\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的证明是伪证】,试问elim你在哪篇帖子中根据自然数的基础理论(即皮亚诺公理或康托尔实正整数生成法则)证明了你的这两个“狗要吃屎”的命题?在哪篇帖子中又离开了你因为“狗要吃屎,所以人必须吃屎”的“要吃狗屎”思维模式,论证了你要吃狗屎的结论?你依据“狗要吃屎的事实”,运用“要吃狗屎”的“逻辑演译”证明了“自然数皆有限数”,无视\(\mathbb{N}_e=\{有限自然数\}\)必存在上确界\(\alpha\)且\(\alpha\)是有限自然数,从而\(\alpha+1\)也是有限自然数。若\(\alpha+1\in\mathbb{N}_e\),则与\(\mathbb{N}_e\)的纯粹性矛盾( 纯粹性必有\(\alpha+1<\alpha+1\));吃狗屎的elim,你能证明\(\alpha+1<\alpha+1\)吗?若\(\alpha+1\notin\mathbb{N}_e\),则与\(\mathbb{N}_e\)的完备性矛盾(完备性要求每个有限自然数都在\(\mathbb{N}_e\)中,吃狗屎的elim,你能运用你狗国铁律化解这两个矛盾吗!?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-10 14:44 , Processed in 0.105320 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表