数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge^\star\textbf{ 滚驴}\color{red}{\textbf{无穷大自然数}}\textbf{泡汤}\)

[复制链接]
发表于 2025-11-13 20:08 | 显示全部楼层

        陶哲轩认为〖自然数可趋近于无限,但不能等于无限〗!那么什么是无限,什么是趋向无限?因为威尔斯特拉斯ε—N定义中\(∞=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1)\}\)\((N_ε∈\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty} n\ne\infty\)(即数与集合问没有相等关系),威尔斯特拉斯把\(n\in\{n|n>N_ε\)\((=[\tfrac{1}{ε}]\)\(+1)\}\)称着n趋向无穷大,记为\(n\to\infty\),所以的〖自然数可趋近于无限,但不能等于无限〗的实质就是\(\displaystyle\lim_{n \to \infty} n\ne\infty\)但\(\displaystyle\lim_{n \to \infty} n\in\infty\)!因为集合\(∞=\{n|n>N_ε,N_ε\in\)\(\mathbb{N}\}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)!
        elim,陶哲轩的数学理论是自洽的。他的极限理论也与数列极限理论;数项级数极限理论;单调集列极限集极限理论;乃至皮亚诺公理在\(\displaystyle\lim_{n \to \infty} n\)处依然成立理论;……都是完全兼容的。
        其实不仅陶哲轩有“每个自然数都是有限数”的说法,就是AI也有这样的说法。我问过AI“每个自然数都是有限数”的“限”在哪里?AI回答我说:每个自然数都小于它的后继,所以自然数a的后继(a+1)就是自然数a“限”;根据这个解释,\(\nu-1=\displaystyle\lim_{n \to \infty}n-1\)也是有“限”自然数,因为\(\nu-1\)<\(\nu\),\(\nu\)就是\(\nu-1\)的“限”嘛!应该看到陶哲轩所说的“每个自然数都是有限数”的“限”也是指每个自然数的后继。否则,陶哲轩的自然数理论就将与他的自然数集是无限集理论(参见陶哲轩《陶哲轩实分析》(第三版P58页第9-13行)不自洽,并且也与其它分析数学的极限理论不兼容。也正因如此,无论是陶哲轩还是AI都从来未提出过\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\);\(\displaystyle\lim_{n \to \infty}n\)\(=Max\mathbb{N}\);\(\displaystyle\lim_{n \to \infty}n\)大于\(\{n\}\)中所有数;…这样一些似是而非的东西。
        elim你要相信什么那是你的自由,但你想通过宿贴频发、耍赖撒泼、谩骂讥笑等流氓手段,来强迫我接受你“要吃狗屎”的“理论”那就太不应该了。如果你是想通过打压我来刷你的存在感,那你注定是要失望的!

回复 支持 反对

使用道具 举报

发表于 2025-11-14 03:18 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-15 04:45 | 显示全部楼层

        elim根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-11-15 23:07 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-16 05:22 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-16 22:21 | 显示全部楼层
春霞见贴便滚见数学就反:孬种老痴丧心病狂

【定理】自然数皆有限数.
【证明】记 \(\,\alpha\,\)为最小无穷序数, 则它之前的
\(\qquad\)都是有限序数. 因\(\alpha\)不是有限序数的后
\(\qquad\)继, 故其不是任何序数的后继即\(\alpha\)不是
\(\qquad\)自然数, 但序数链\(\,\mathbb{N}\,\)不含非自然数, 故
\(\qquad\)\(\alpha\)后面无自然数. 即\(\mathbb{N}\)恰恰是\(\alpha\)的前段
\(\qquad\)可见自然数皆有限数.\(\square\)



【推论】\(\alpha=\omega\) (1st极限序数)
【推论】不存在无穷大自然数.
\(\qquad\therefore\quad\)春霞无穷大自然数泡汤.


回复 支持 反对

使用道具 举报

发表于 2025-11-17 02:02 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 02:25 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 02:28 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 09:38 | 显示全部楼层

        elim 2025-11-17 07:13发帖称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n 不等于任何自然数.  因为皮亚诺公理仅对自然数成立, 滚驴的 皮亚诺公理对 lim n 仍成立的阵鸣是预设 lim n为自然数的循环论证.春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \epsilon>0\iff \exists\)正整数\(N_\epsilon\)\((=[\tfrac{1}{\epsilon}]+1)\),当\(n>N_{\epsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n\)]+1)=\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\)
同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2n\)]+1)=\(\displaystyle\lim_{n \to \infty}2n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2^n\)]+1)=\(\displaystyle\lim_{n \to \infty}2^n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}10^n\)]+1)=\(\displaystyle\lim_{n \to \infty}10^n+1\)\(\in\mathbb{N}\);
……
        elim根本就不懂什么是无穷?什么是趋向无穷?什么是自然数?当然也就不知道什么是无穷自然数?什么是超穷自然数了?!elim关于自然数和无穷的一切证明,都充满了赌场流氓、市场泼妇的气息。  elim数学上的成就是靠你骂出来的吗?

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-6 08:27 , Processed in 0.088295 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表