数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\star \color{navy}{\textbf{ 蠢可达}\color{red}{死磕}\textbf{陶哲轩}}\)

[复制链接]
发表于 2025-8-18 21:40 | 显示全部楼层

        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-18 22:06 | 显示全部楼层

        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-18 22:15 | 显示全部楼层

        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-19 02:33 | 显示全部楼层

        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-19 06:49 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页,第19—20行),ω表示第一个超穷数。Cantor非负整数集为\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)  .  其中,\(\Omega_j=\{j\cdot\omega,\)\(j\cdot\omega\)\(+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!更因为集合论和超穷数理论都是康托尔提出来的。既然康托尔认定了\(\nu(=\displaystyle\lim_{n \to \infty}n)\in\mathbb{N}\),那么elim一切关于\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)的“证明”都是扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-8-19 07:24 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-8-19 08:05 | 显示全部楼层
elim,陶哲轩什么时侯说过\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)??
回复 支持 反对

使用道具 举报

发表于 2025-8-19 08:22 | 显示全部楼层

        陶哲轩先生在他的《陶哲轩实分析》第三版P19页2—4行也讲了〖存在其它数系,使得“无穷大”是该数系中的元素。例如基数系、序数系以及p进数系〗。
        由于集合论是在基数系和序数系下展开讨论的,集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\}\)的极限集是在十(p=10)进数系下讨论的。所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)。同时我们根据数的三歧性原理证明了皮亚诺公理第二条对\(\displaystyle\lim_{n \to \infty}n\)成立(参见《\(\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中最大数》的证明)。因此,elim的【\(\displaystyle\lim_{n \to \infty}n=\)\(sup\mathbb{N}\)\(\notin\mathbb{N}\)】的臆想不成立!所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)再次得到严谨证明。
        对于elim这样的民科领袖,本帖他是不会看的。他宁肯削足适靴,他也会坚持他的胡说八道。不过分享本帖,也为关注\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)问题的网友提供参考!
回复 支持 反对

使用道具 举报

发表于 2025-8-19 08:36 | 显示全部楼层
  
        elim,自然数列\(\{n\}\)发散这根本不用你自作多情来“证明”一通,你的这个“证明”,除了说明你根本就不懂Weierstrass数列极限的\((\varepsilon—N)\)定义,还能说明什么呢?
        根据Weierstrass数列极限的\((\varepsilon—N)\)定义:\(\forall\varepsilon>0,\exists\)\( N(=[\tfrac{1}{\varepsilon}]+1)\)\(\in\mathbb{N}\),当n>N时,恒有\(| a_n-a |<\varepsilon\),\(\iff\)\(\displaystyle\lim_{n \to \infty}a_n=a\)中的限制性短语\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)知\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\}\ne\phi\),且\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
       所以要想用Weierstrass数列极限的\((\varepsilon—N)\)定义,证明\(\displaystyle\lim_{n \to \infty}n=\infty\),需且只需证明对\(\forall\varepsilon>0\)\(\exists\)\( N(=[\tfrac{1}{\varepsilon}]+1)\)\(\in\mathbb{N}\),使得|\(\displaystyle\lim_{n \to \infty}n-\infty\)|=\(|\infty-{\infty}|<{\varepsilon}\)即可!显然不等式\(|\infty-{\infty}|<{\varepsilon}\)对\(\varepsilon=\tfrac{1}{2}\)成立,所以\(\displaystyle\lim_{n \to \infty}n=\infty\)或\(\displaystyle\lim_{n \to \infty}n\)趋向于\(\infty\).所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

发表于 2025-8-19 09:01 | 显示全部楼层

        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 18:44 , Processed in 0.083149 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表