|

楼主 |
发表于 2010-6-26 18:03
|
显示全部楼层
哥猜难题圆满破解
LLZ2008先生:您问“您的f(n)≥2,如果n+1刚好是下一个素数p的始筛点,则不能得出f(n+1)≥2,因为还要筛p的两个同余类”。
我在211楼已作了说明:如果n+1是下一个始筛点n[k+1],则由定理二可知:
我们有f(n{k+1])≥ 2.
对于您说的如果f(n)≥ 2,就不可能得到f(n+1)≥ 2,因为还要筛去两个同余
类。
事实上在您说的情况下就有f(n)=2,,即至少有f。(n+1)=3 。
这种情况只出现在低端,当偶数N大于120以后就不会再有这种情形。
注意:在筛最后一个素因子P时,一筛没有筛项,二筛也只有一个消项,
所以依然有f(n+1)≥ 2..
例子:设n=4, n+1=5=n1,则有f(4)=2 (1和3);f。(n1)=f。(5)=3
筛p1=3, 一筛无消项,二筛消一项,所以依然有f(n+1)=2.
表达能力有限,角标有点乱。 |
|