数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge^*\;\color{Green}{\lim n\textbf{ 非自然数之最简证明}}\)

[复制链接]
发表于 2025-11-14 03:09 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-14 21:22 | 显示全部楼层
\(\Huge\color{Green}{\underset{n\to\infty}{\lim}n\textbf{ 非自然数最简证明}}\)

【定理】\(\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}\)
【证明】因为\(\{n\}\) 是无最大元的单增序列, 所以
\(\qquad k<\lim n\small\,(\forall k\in\mathbb{N})\) 即 \(\lim n\) 不等于任何自
\(\qquad\)然数. 所以 \(\lim n\)不是自然数. \(\small\quad\square\)

无论咋扯, 总有 \(\lim n\) 大于各自然数故非自然数.
滚驴拒绝主贴定理及其证明, 不可理喻,已无药可
救. 驴滚自证其 种孬脑痴 本性. 我负责挂它黑板.
回复 支持 反对

使用道具 举报

发表于 2025-11-15 04:31 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 01:47 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 09:47 | 显示全部楼层

        elim 2025-11-17 07:13发帖称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n 不等于任何自然数.  因为皮亚诺公理仅对自然数成立, 滚驴的 皮亚诺公理对 lim n 仍成立的阵鸣是预设 lim n为自然数的循环论证.春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \epsilon>0\iff \exists\)正整数\(N_\epsilon\)\((=[\tfrac{1}{\epsilon}]+1)\),当\(n>N_{\epsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n\)]+1)=\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\)
同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2n\)]+1)=\(\displaystyle\lim_{n \to \infty}2n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2^n\)]+1)=\(\displaystyle\lim_{n \to \infty}2^n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}10^n\)]+1)=\(\displaystyle\lim_{n \to \infty}10^n+1\)\(\in\mathbb{N}\);
……
        elim根本就不懂什么是无穷?什么是趋向无穷?什么是自然数?当然也就不知道什么是无穷自然数?什么是超穷自然数了?!elim关于自然数和无穷的一切证明,都充满了赌场流氓、市场泼妇的气息。  elim数学上的成就是靠你骂出来的吗?

回复 支持 反对

使用道具 举报

发表于 2025-11-17 10:58 | 显示全部楼层

        elim 2025-11-17 07:13发帖称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n 不等于任何自然数.  因为皮亚诺公理仅对自然数成立, 滚驴的 皮亚诺公理对 lim n 仍成立的阵鸣是预设 lim n为自然数的循环论证.春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(\iff\)\(\forall \varepsilon>0\)\(\exists\)正整数\(N_\varepsilon\)\((=[\tfrac{1}{\varepsilon}]+1)\),当\(n>N_{\varepsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n\)]+1)=\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\)
同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2n\)]+1)=\(\displaystyle\lim_{n \to \infty}2n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2^n\)]+1)=\(\displaystyle\lim_{n \to \infty}2^n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}10^n\)]+1)=\(\displaystyle\lim_{n \to \infty}10^n+1\)\(\in\mathbb{N}\);
……
        elim根本就不懂什么是无穷?什么是趋向无穷?什么是自然数?当然也就不知道什么是无穷自然数?什么是超穷自然数了?!elim关于自然数和无穷的一切证明,都充满了赌场流氓、市场泼妇的气息。  elim数学上的成就是靠你骂出来的吗?

回复 支持 反对

使用道具 举报

发表于 2025-11-17 15:16 | 显示全部楼层
elim,自然数集\(\mathbb{N}\)的真像是什么??老子在什么地方掩盖了什么真像?!皮亚诺公理哪条哪款说了\(\omega=\mathbb{N}\),冯\(\cdot\)诺依曼在什么地方说了\(\omega=\mathbb{N}\)?康托尔实正整理论中\(\omega\)是最小超穷数。无论是康托尔、还是皮亚诺或冯\(\cdot\)诺 依曼他们在哪本著述中说到了\(\omega\)是最小无穷大?由于无穷大量与无穷小量互为倒数关系,那么因为\((\tfrac{1}{\displaystyle\lim_{n \to \infty}n})^{-1}\)=\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)又有什么错?这个关系就是在柯西极限理论中也是存立的!所有小于超穷数\(\omega\)正整数都是自然数,老夫利用这个性质不是证明了皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……也成立吗?elim,你的\(\displaystyle\lim_{n \to \infty}n\)大于\(\{n\}\)所有数、\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=\)\(Max\mathbb{N}\)、……依据是什么?像你这样毫无根据的杜撰,才是真正是他妈的畜生不如!
回复 支持 反对

使用道具 举报

发表于 2025-11-17 16:20 | 显示全部楼层

        elim 2025-11-17 07:13发帖称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n 不等于任何自然数.  因为皮亚诺公理仅对自然数成立, 滚驴的 皮亚诺公理对 lim n 仍成立的阵鸣是预设 lim n为自然数的循环论证.春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \epsilon>0\iff \exists\)正整数\(N_\epsilon\)\((=[\tfrac{1}{\epsilon}]+1)\),当\(n>N_{\epsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n\)]+1)=\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\)
同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2n\)]+1)=\(\displaystyle\lim_{n \to \infty}2n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2^n\)]+1)=\(\displaystyle\lim_{n \to \infty}2^n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}10^n\)]+1)=\(\displaystyle\lim_{n \to \infty}10^n+1\)\(\in\mathbb{N}\);
……
        elim根本就不懂什么是无穷?什么是趋向无穷?什么是自然数?当然也就不知道什么是无穷自然数?什么是超穷自然数了?!elim关于自然数和无穷的一切证明,都充满了赌场流氓、市场泼妇的气息。  elim数学上的成就是靠你骂出来的吗?

回复 支持 反对

使用道具 举报

发表于 2025-11-17 16:27 | 显示全部楼层

        elim 2025-11-17 07:13发帖称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n 不等于任何自然数.  因为皮亚诺公理仅对自然数成立, 滚驴的 皮亚诺公理对 lim n 仍成立的阵鸣是预设 lim n为自然数的循环论证.春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \epsilon>0\iff \exists\)正整数\(N_\epsilon\)\((=[\tfrac{1}{\epsilon}]+1)\),当\(n>N_{\epsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n\)]+1)=\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\)
同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2n\)]+1)=\(\displaystyle\lim_{n \to \infty}2n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2^n\)]+1)=\(\displaystyle\lim_{n \to \infty}2^n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}10^n\)]+1)=\(\displaystyle\lim_{n \to \infty}10^n+1\)\(\in\mathbb{N}\);
……
        elim根本就不懂什么是无穷?什么是趋向无穷?什么是自然数?当然也就不知道什么是无穷自然数?什么是超穷自然数了?!elim关于自然数和无穷的一切证明,都充满了赌场流氓、市场泼妇的气息。  elim数学上的成就是靠你骂出来的吗?

回复 支持 反对

使用道具 举报

发表于 2025-11-17 16:35 | 显示全部楼层

        elim 2025-11-17 07:13发帖称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n 不等于任何自然数.  因为皮亚诺公理仅对自然数成立, 滚驴的 皮亚诺公理对 lim n 仍成立的阵鸣是预设 lim n为自然数的循环论证.春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \epsilon>0\iff \exists\)正整数\(N_\epsilon\)\((=[\tfrac{1}{\epsilon}]+1)\),当\(n>N_{\epsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n\)]+1)=\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\)
同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2n\)]+1)=\(\displaystyle\lim_{n \to \infty}2n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2^n\)]+1)=\(\displaystyle\lim_{n \to \infty}2^n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}10^n\)]+1)=\(\displaystyle\lim_{n \to \infty}10^n+1\)\(\in\mathbb{N}\);
……
        elim根本就不懂什么是无穷?什么是趋向无穷?什么是自然数?当然也就不知道什么是无穷自然数?什么是超穷自然数了?!elim关于自然数和无穷的一切证明,都充满了赌场流氓、市场泼妇的气息。  elim数学上的成就是靠你骂出来的吗?

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-28 21:13 , Processed in 0.088917 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表