数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: ysr

数论问题巅峰对决

[复制链接]
 楼主| 发表于 2020-8-15 12:52 | 显示全部楼层
从88~3000内的全体偶数都有了,不缺项,能全覆盖大于等于88的偶数,好像不用继续验证更大的数了。
下面是验证1~30000内的结果:
费劲,等会儿吧。
出来了,有1259对:
1与30000之间有1259对孪生(p,p+14)素数对:
/22/26/28/32/38/44/46/52/56/58/68/74/82/86/88/94/98/112/116/122/124/142/152/164/166/178/182/196/208/212/214/226/242/248/254/256/266/278/292/296/298/322/332/352/364/368/374/382/394/404/416/424/434/446/448/464/472/476/494/506/556/562/572/578/584/586/592/602/616/628/632/646/658/662/668/676/724/742/754/758/772/812/824/838/842/844/868/872/892/896/922/926/952/956/962/968/982/998/1006/1024/1034/1036/1046/1048/1054/1076/1078/1102/1108/1138/1166/1178/1186/1202/1208/1216/1244/1264/1274/1292/1304/1306/1312/1414/1424/1438/1444/1466/1468/1474/1496/1508/1538/1564/1568/1582/1586/1594/1598/1612/1622/1642/1652/1678/1682/1684/1708/1738/1762/1768/1774/1816/1846/1862/1886/1892/1916/1964/1988/2002/2012/2014/2054/2068/2084/2096/2098/2114/2126/2128/2146/2222/2228/2236/2252/2254/2258/2266/2282/2296/2324/2326/2356/2362/2366/2396/2408/2426/2432/2452/2462/2488/2536/2564/2594/2606/2632/2648/2662/2672/2674/2678/2692/2698/2704/2714/2726/2734/2782/2804/2818/2872/2894/2902/2912/2924/2942/2954/2984/2986/3026/3034/3052/3064/3094/3104/3152/3202/3206/3236/3244/3286/3314/3316/3328/3344/3346/3358/3374/3376/3448/3476/3484/3514/3526/3532/3542/3544/3556/3598/3608/3622/3628/3658/3686/3712/3724/3754/3782/3808/3818/3836/3838/3848/3862/3866/3892/3896/3904/3932/4004/4034/4036/4042/4064/4114/4142/4144/4216/4226/4244/4246/4256/4258/4268/4274/4312/4342/4406/4436/4466/4478/4498/4508/4532/4534/4576/4582/4606/4636/4658/4664/4688/4706/4718/4736/4744/4774/4798/4802/4816/4846/4904/4918/4952/4958/4972/4984/4988/5008/5024/5036/5066/5092/5182/5194/5212/5246/5288/5294/5318/5366/5402/5422/5428/5434/5456/5464/5486/5492/5516/5542/5638/5654/5668/5674/5726/5764/5798/5806/5828/5836/5842/5854/5864/5866/5882/5912/5938/5996/6022/6052/6058/6106/6116/6128/6136/6148/6158/6188/6214/6232/6262/6272/6284/6286/6302/6314/6338/6344/6352/6358/6374/6382/6412/6436/6466/6506/6536/6562/6566/6584/6592/6622/6674/6676/6688/6694/6704/6718/6748/6776/6778/6808/6818/6842/6848/6856/6884/6932/6962/6976/6982/6986/6998/7012/7028/7042/7054/7094/7136/7144/7192/7222/7228/7268/7336/7466/7472/7474/7492/7502/7514/7522/7532/7544/7562/7574/7576/7588/7592/7606/7654/7658/7684/7688/7702/7738/7742/7774/7808/7838/7868/7892/7922/7934/7948/7978/8024/8054/8074/8096/8102/8108/8132/8176/8194/8206/8248/8258/8278/8302/8404/8446/8528/8558/8612/8614/8662/8678/8684/8692/8704/8722/8746/8768/8822/8834/8846/8852/8878/8908/8948/8956/8984/8986/9014/9026/9028/9044/9118/9142/9166/9172/9188/9224/9242/9296/9308/9326/9334/9356/9406/9418/9446/9448/9452/9476/9482/9506/9536/9616/9628/9634/9646/9664/9704/9734/9754/9796/9802/9818/9844/9872/9886/9916/10022/10024/10052/10054/10076/10084/10118/10126/10148/10154/10166/10178/10196/10208/10238/10258/10274/10286/10288/10316/10318/10328/10384/10414/10442/10444/10448/10472/10514/10516/10544/10574/10582/10612/10616/10642/10672/10724/10738/10846/10852/10868/10874/10876/10924/10964/10972/10988/11042/11072/11098/11102/11134/11146/11228/11258/11272/11302/11314/11336/11368/11384/11408/11452/11482/11504/11512/11534/11564/11602/11704/11716/11792/11798/11816/11848/11882/11912/11918/11924/11938/11954/11956/11996/12022/12026/12056/12058/12086/12128/12134/12212/12226/12254/12266/12358/12362/12394/12406/12436/12472/12488/12502/12512/12526/12532/12554/12562/12568/12598/12604/12626/12656/12674/12728/12806/12814/12838/12904/12908/12926/12938/12968/12988/12994/13018/13022/13048/13078/13136/13162/13202/13234/13244/13282/13312/13324/13352/13382/13396/13426/13436/13472/13484/13538/13552/13582/13612/13634/13664/13694/13696/13706/13708/13736/13744/13766/13774/13814/13844/13888/13892/13898/13916/13918/13948/13982/14014/14066/14072/14158/14192/14236/14266/14308/14404/14416/14422/14434/14446/14464/14504/14518/14534/14548/14576/14578/14606/14642/14654/14668/14684/14698/14732/14738/14752/14756/14768/14782/14798/14812/14828/14836/14882/14954/14998/15046/15068/15076/15092/15106/15116/15122/15146/15202/15248/15256/15274/15284/15292/15304/15314/15334/15344/15346/15376/15398/15428/15458/15482/15512/15526/15566/15634/15656/15664/15746/15752/15776/15782/15788/15802/15874/15892/15904/15922/15986/16048/16072/16076/16082/16088/16112/16126/16202/16208/16238/16334/16348/16354/16396/16432/16436/16462/16466/16588/16618/16634/16646/16676/16688/16714/16744/16886/16916/16978/16996/17026/17062/17092/17108/17122/17152/17174/17224/17306/17336/17374/17402/17404/17416/17434/17482/17504/17524/17554/17566/17584/17594/17612/17642/17698/17722/17776/17822/17866/17896/17906/17924/17944/17972/17974/18028/18062/18074/18104/18112/18134/18184/18196/18214/18238/18272/18326/18356/18382/18386/18412/18428/18442/18466/18508/18538/18568/18602/18676/18686/18716/18728/18734/18758/18772/18788/18854/18884/18932/18994/19016/19066/19196/19198/19222/19234/19252/19274/19304/19388/19402/19406/19418/19432/19442/19448/19456/19462/19486/19492/19516/19556/19568/19702/19712/19724/19778/19828/19876/19904/19934/19964/19976/19978/20006/20008/20036/20086/20128/20132/20158/20162/20216/20234/20246/20312/20338/20342/20374/20384/20426/20492/20494/20536/20548/20578/20626/20678/20732/20734/20758/20774/20864/20872/20888/20914/20944/20996/20998/21016/21046/21074/21154/21164/21172/21178/21206/21262/21298/21332/21362/21392/21502/21506/21508/21514/21544/21572/21574/21584/21602/21632/21698/21742/21752/21772/21788/21802/21836/21856/21866/21878/21896/21976/22012/22052/22078/22094/22108/22138/22144/22174/22244/22262/22288/22292/22382/22468/22496/22516/22526/22556/22558/22628/22636/22654/22684/22694/22706/22712/22724/22736/22754/22792/22802/22886/22892/22922/22958/22978/22988/23026/23042/23044/23056/23072/23102/23158/23174/23182/23188/23212/23306/23312/23342/23354/23384/23432/23524/23546/23552/23578/23608/23614/23618/23648/23704/23758/23804/23816/23842/23872/23884/23894/23902/23914/23986/23992/24008/24034/24076/24092/24098/24106/24118/24122/24136/24166/24266/24344/24406/24428/24454/24458/24484/24532/24608/24748/24778/24836/24862/24874/24892/24904/24938/25072/25102/25112/25132/25168/25204/25324/25358/25424/25438/25454/25594/25618/25624/25658/25688/25718/25732/25748/25756/25778/25786/25834/25888/25904/25918/25928/25954/25966/25984/26014/26068/26098/26126/26156/26168/26252/26278/26282/26324/26332/26372/26402/26408/26422/26464/26474/26576/26612/26684/26696/26698/26702/26708/26714/26716/26744/26798/26848/26864/26876/26878/26906/26936/26966/26996/27002/27046/27058/27076/27088/27092/27226/27256/27268/27314/27352/27382/27412/27422/27442/27464/27472/27494/27524/27566/27596/27632/27748/27752/27758/27764/27778/27788/27794/27808/27832/27932/27968/27982/28012/28016/28042/28066/28072/28084/28096/28166/28196/28292/28294/28304/28334/28418/28424/28448/28462/28478/28532/28556/28564/28588/28606/28612/28634/28642/28646/28672/28738/28744/28774/28822/28828/28852/28886/28894/28964/28994/29048/29116/29138/29152/29194/29206/29216/29236/29312/29318/29348/29414/29438/29458/29468/29516/29552/29584/29596/29614/29626/29648/29656/29738/29774/29804/29818/29848/29852/29866/29932/29974/29998
下面是孪中和,仅发一小段,下一篇发吧
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-15 12:58 | 显示全部楼层
44/48/50/52/54/56/58/60/64/66/68/70/72/74/76/78/80/82/84/86/
88/90/92/94/96/98/100/102/104/106/108/110/112/114/116/118/120/122/124/126/
128/130/132/134/136/138/140/142/144/146/148/150/152/154/156/158/160/162/164/166/
168/170/172/174/176/178/180/182/184/186/188/190/192/194/196/198/200/202/204/206/
208/210/212/214/216/218/220/222/224/226/228/230/232/234/236/238/240/242/244/246/
248/250/252/254/256/258/260/262/264/266/268/270/272/274/276/278/280/282/284/286/
288/290/292/294/296/298/300/302/304/306/308/310/312/314/316/318/320/322/324/326/
328/330/332/334/336/338/340/342/344/346/348/350/352/354/356/358/360/362/364/366/
368/370/372/374/376/378/380/382/384/386/388/390/392/394/396/398/400/402/404/406/
408/410/412/414/416/418/420/422/424/426/428/430/432/434/436/438/440/442/444/446/
448/450/452/454/456/458/460/462/464/466/468/470/472/474/476/478/480/482/484/486/
488/490/492/494/496/498/500/502/504/506/508/510/512/514/516/518/520/522/524/526/
528/530/532/534/536/538/540/542/544/546/548/550/552/554/556/558/560/562/564/566/
568/570/572/574/576/578/580/582/584/586/588/590/592/594/596/598/600/602/604/606/
608/610/612/614/616/618/620/622/624/626/628/630/632/634/636/638/640/642/644/646/
648/650/652/654/656/658/660/662/664/666/668/670/672/674/676/678/680/682/684/686/
688/690/692/694/696/698/700/702/704/706/708/710/712/714/716/718/720/722/724/726/
728/730/732/734/736/738/740/742/744/746/748/750/752/754/756/758/760/762/764/766/
768/770/772/774/776/778/780/782/784/786/788/790/792/794/796/798/800/802/804/806/
808/810/812/814/816/818/820/822/824/826/828/830/832/834/836/838/840/842/844/846/
中间的不发了,再发末尾一段,好像一直到末尾都不短项:
23088/23090/23092/23094/23096/23098/23100/23102/23104/23106/23108/23110/23112/23114/23116/23118/23120/23122/23124/23126/
23128/23130/23132/23134/23136/23138/23140/23142/23144/23146/23148/23150/23152/23154/23156/23158/23160/23162/23164/23166/
23168/23170/23172/23174/23176/23178/23180/23182/23184/23186/23188/23190/23192/23194/23196/23198/23200/23202/23204/23206/
23208/23210/23212/23214/23216/23218/23220/23222/23224/23226/23228/23230/23232/23234/23236/23238/23240/23242/23244/23246/
23248/23250/23252/23254/23256/23258/23260/23262/23264/23266/23268/23270/23272/23274/23276/23278/23280/23282/23284/23286/
23288/23290/23292/23294/23296/23298/23300/23302/23304/23306/23308/23310/23312/23314/23316/23318/23320/23322/23324/23326/
23328/233(此数值不完整,是控件容量小的原因)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-15 13:03 | 显示全部楼层
本帖最后由 ysr 于 2020-8-16 10:26 编辑

定理:除了3,5,7这一组,间距为4,10,16,22,……,6n+4的孪生素数对都有无穷多。
就是成立的,等会儿给出证明,间距为600的孪生素数是不存在的,需要研究一下。
这都容易证明,这是啥高科技?(间距为6的孪生素数对,可能仅3,5,11,13这一组)

证明:如下数列可以产生无穷4生素数组,即4个对应项都是素数的情况。
2n+9
2n+11
2n+21
2n+23.
4个数列对应项依次差为2,10,2,每组这样的4生素数组,有两对孪生素数对,间距为10,这样的素数组有无穷多,所以,间距为10的孪生素数对有无穷多。
同理,间距为16,22,……,6n+4的素数对,都有无穷多。(证明粗略,仍然需要研究)
回复 支持 反对

使用道具 举报

发表于 2020-8-15 13:39 | 显示全部楼层
非常感谢 ysr 兄,

今次的生命偶数是2^6=64, 小偶数,非常理想。

还有比64更小的生命偶数?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-15 13:50 | 显示全部楼层
好的,休息了,下午还上班呢,祝取得进步!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-15 14:37 | 显示全部楼层
间距为10的孪生素数对是存在的且有无穷多组,下面是程序结果及代码:
3与223之间有5组4生素数对:
/17/19/29/31
/29/31/41/43
/59/61/71/73
/137/139/149/151
/179/181/191/193。
代码如下:(仅发主程序)
Private Sub Command1_Click()
Dim a, b
a = Val(Text1) * 2 + 1
a1 = a
q = 2 * Val(Text2) + 23
m = Sqr(q)
If Right(a, 1) Mod 2 = 0 Then
a = a + 1
Else
a = a
End If
s = 0
a2 = Val(Text1)
Do While a2 * 2 + 13 <= m
B1 = a2 * 2 + 9
b2 = a2 * 2 + 11
b3 = a2 * 2 + 21
b4 = a2 * 2 + 23

c1 = fenjieyinzi0(Val(B1))
C2 = fenjieyinzi0(Val(b2))
c3 = fenjieyinzi0(Val(b3))
D1 = fenjieyinzi0(Val(b4))

If InStr(c1, "*") = 0 And InStr(D1, "*") = 0 And InStr(C2, "*") = 0 And InStr(c3, "*") = 0 Then
s = s + 1
Print B1, b2, b3, b4
Text3 = Text3 & "/" & B1 & "/" & b2 & "/" & b3 & "/" & b4 & vbCrLf
Else
s = s
End If
a2 = a2 + 1
a = a2 * 2 + 1
Loop
a2 = a2
s1 = s
Do While a2 * 2 + 23 <= q
B1 = a2 * 2 + 9
b2 = a2 * 2 + 11
b3 = a2 * 2 + 21
b4 = a2 * 2 + 23
c1 = fenjieyinzi0(Val(B1))
C2 = fenjieyinzi0(Val(b2))
c3 = fenjieyinzi0(Val(b3))
D1 = fenjieyinzi0(Val(b4))

If InStr(c1, "*") = 0 And InStr(D1, "*") = 0 And InStr(C2, "*") = 0 And InStr(c3, "*") = 0 Then
s1 = s1 + 1
Print B1, b2, b3, b4
Text3 = Text3 & "/" & B1 & "/" & b2 & "/" & b3 & "/" & b4 & vbCrLf
Else
s1 = s1
End If
a2 = a2 + 1

Loop
Combo1 = a1 & "与" & q & "之间有" & s1 & "组4生素数对:" & vbCrLf & Text3

End Sub

Private Sub Command2_Click()
Text1 = ""
Text2 = ""
Text3 = ""
Combo1 = ""
Form1.Cls
End Sub
回复 支持 反对

使用道具 举报

发表于 2020-8-15 14:41 | 显示全部楼层
非常感谢 ysr 兄,

计算出最小生命偶数是 2^6=64 .

易经有八八六十四卦,是宇宙密码。

人体有 8*8 = 64 种DNA遗传密码。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-15 14:48 | 显示全部楼层
哈哈,是巧合了,宇宙许多偶然事件必然地发生了,数论中有许多貌似概率的事件其实是必然的规律!
休息了,有空再聊,谢谢沟通!欢迎探讨!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-15 18:59 | 显示全部楼层
可以证明间距为600的孪生素数对是不存在的,因为中间有且只有299个奇数,无论如何调整,这4个数中必有一个能被3整除,如11,13,613,615,显然615能被3和5整除。

所以,詹姆斯.梅纳德的结论是错误的(梅纳斯说的间距600的孪生素数对有无穷多是完全错误的一组也没有),则其理论和方法没有意义没有价值。就是垃圾稀牛屎!
比如17,19,619,621,显然621能被3整除。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-15 19:51 | 显示全部楼层
无穷多和一个也没有,那是天壤之别,可见所谓的“高级理论”完全是信口雌黄胡说八道!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-28 03:15 , Processed in 0.106142 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表