数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\textbf{ 滚驴白痴真身被验明},\color{red}{\textbf{孬贼船漏不打一处来}}\)

[复制链接]
发表于 2025-10-9 04:03 | 显示全部楼层

        elim根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-10-16 09:59 | 显示全部楼层

一、皮亚公理
1、0是自然数:自然数集合的起始元素。
2、后继函数存在性:每个自然数a都有唯一后继数a'(即a+1),且a'也是自然数。
3、0非任何数的后继:0不是任何自然数的后继,避免循环(如0→1→0)。
4、后继唯一性:不同自然数的后继不同,即若a'=b',则a=b。
5、归纳公理:若子集S包含0,且当n∈S时n'∈S,则S包含全体自然数(数学归纳法的理论基础)。
二、命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题
1、陶哲轩认为〖每个自照数都是有限数(这个限是每个自然数都小于它的后继),自然数可趋向于无穷,但不等于无穷〗,所以陶哲轩每认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).注意无论是谁的《分析数学》,∞均是指集合\(N_∞=\{n|n>[\tfrac{1}{ε}]+1\}\).所以陶哲轩亦认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
2、现行教科书《实变函数论》认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
3、皮亚诺公理第2条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(参见陶哲轩自然数集是无限集的证明).
4、根据皮亚诺公理2、3、4条可证明命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题.
elim之所以证明不了命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是因为你根本就不知道什么是无穷,什么是趋向于无穷?根本就不知道e氏\(\mathbb{N}_∞\)只是你定义出来反现行数学的道具。
回复 支持 反对

使用道具 举报

发表于 2025-10-16 14:08 | 显示全部楼层

       由于elim根本不知道什么是自然数?什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?所以elim总结出来的一切“理论”均不自洽,也不与现行数学兼容。
        一、什么是自然数?
        现行教材对自然数有两种定义:
        定义1(康托尔定义)有限集合的基数称作自然数。
        显然康托尔是认同无穷自然数的,因为在康托尔非负整数集\(\Omega=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,……j\omega+\nu\}\),当j=0时,\(\Omega_0=\)\(\{0,1,2,\)\(…,\nu\}\),其中\(\nu=\)\(\displaystyle\lim_{n\to\infty}n\),因此我们有理由认为康托尔是支持\(\displaystyle\lim_{n\to\infty}n\in\mathbb{N}\)的。
        定义2(即皮亚诺公理定义)满足皮亚公理的非负整数叫自然数
        现在我们证明数\(\nu=\displaystyle\lim_{n\to\infty}n\)满足皮亚诺公理:因数\(\nu\ne0\),所以\(\nu\)有直前\(\nu-1\),同理\(\nu-1\)有直前\(\nu-2\),…根据定理〖若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),则\(\mathbb{N}=\phi\).〗所以皮亚诺亦认可\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),同时,我们还可以证明\(\displaystyle\lim_{n \to \infty}(n+j)\in\mathbb{N}\).故此\(\displaystyle\lim_{n \to \infty}n\)满足皮亚诺公理,所以\(\displaystyle\lim_{n \to \infty}n\)是自然数。
        二、什么是无穷,什么是趋向无穷?
        定义1(威尔斯托拉斯定义)对\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)称\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\}为\infty\)
        定义2 当\(n\in\mathbb{N}\)时,称n趋向于\(\infty\),记为\(n\to\infty\).
        根据威尔斯托拉斯关于\(\mathbb{N}_{\infty}\)的定义,\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
        三、什么是无穷数,什么是真穷数?
        在现行数学理论中我们称集合\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\)中的每个数都叫无穷数,而集合\(\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,…j\omega+\nu\}\)(\(j\ne 0\))中的每个数都叫超穷数!显然大学者elim的\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),\(\mathbb{N}_{\infty}=\phi\)都不自洽,也不与现行数学兼容。
        我知道我写这些elim是不会看的,不过把这些东西写出来,也算是对盲目参加elim培训的网友的一点友情提示吧!
回复 支持 反对

使用道具 举报

发表于 2025-10-20 06:48 | 显示全部楼层

        elim〖数\(\nu=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体。〗这句话可是康托尔说的。另外,威尔斯特拉斯ε—N极限定义中所说的〖对任意预先给定的无论怎样小的正数ε,存在\(N_ε\)(=[\(\tfrac{1}{ε}]+1\),当\(n>N_ε\)时,恒有\(|a_n-a|<ε\)〗这便是菲赫金哥尔茨定义集合\(N_∞=\{n|n>N_ε,N_ε\in\mathbb{N}\}\)理论根据。试问你哪个“大儿科”的龚升是怎样解读\(n\to\infty\)的?难道他也把\(\mathbb{N}_∞\)解读空集吗?如果\(\mathbb{N}_∞=\phi\),那么\(\displaystyle\lim_{n \to \infty}a_n=a\)中的\(n\to\infty\)还有什么数学意义?任意学科的(分析数学、级数理论、理论力学、分析化学……)的极限运算又当如何进行。你宁可相信【一个人永远走不出一间层子(即\(\tfrac{1}{2^n}\)永远不等0)】也不相信施笃兹定理。老实说对你提出的那个单减集例的极限集无论是用中学交并运算的定义及运算规律,还是用北大周民强《实变函数论》定义1.8还是1.9得到的都是\(\underset{n→∞}{\underline{lim}}A_n= \)\(\underset{n→∞}{\overline{lim}}A_n\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。不管\(\displaystyle\lim_{n \to \infty}n\)是否属于\(\mathbb{N}\)你都得不到\(\mathbb{N}_∞=\phi\),你还好意思为此举办科普讲座,你还好意思以此与我缠斗不休。你不信可把你【无穷交就是一种骤变】的数学创新理论,拿到中学或大学去做一次报告,看看有多少学生或老师认同你的观点?elim,你还是适渴而止吧。你即使把我闹得身败名裂(其实身名对一个九十多岁的人已经不再是重的了),对你又有什么好处?若待论坛的人觉醒过来,对你的大作进行仔细分析论证,你这个民科领袖的形像还有如逝光辉吗?再有关于主帖之疑你可去参看方嘉琳《集合论》关于自然数的截段理论自酌!
回复 支持 反对

使用道具 举报

发表于 2025-10-20 13:31 | 显示全部楼层

        elim,〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体(参见康托《超穷数理论基础》P42页第19-20行)〗这句话可是康托尔说的。另外,威尔斯特拉斯ε—N极限定义中所说的〖对任意预先给定的无论怎样小的正数ε,存在\(N_ε\)(=[\(\tfrac{1}{ε}]+1)\),当\(n>N_ε\)时,恒有\(|a_n-a|<ε\) . 〗这便是菲赫金哥尔茨定义集合\(N_∞=\)\(\{n|n>N_ε,\)\(N_ε\in\mathbb{N}\}\)理论根据。试问你那个“大儿科”的龚升是怎样解读\(n\to\infty\)的?难道他也把\(\mathbb{N}_∞\)解读成空集吗?如果\(\mathbb{N}_∞=\phi\),那么\(\displaystyle\lim_{n \to \infty}a_n=a\)中的\(n\to\infty\)还有什么数学意义?任意学科(分析数学、级数理论、理论力学、分析化学……)的极限运算又当如何进行?你宁可相信【一个人永远走不出一间屋子(芝诺悖论,即\(\tfrac{1}{2^n}\)永远不等0)】也不相信施笃兹定理。老实说对你提出的那个单减集列的极限集,无论是用中学交并运算的定义及运算规律,还是用北大周民强《实变函数论》定义1.8还是1.9,得到的都是\(\underset{n→∞}{\underline{lim}}A_n= \)\(\underset{n→∞}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。不管\(\displaystyle\lim_{n \to \infty}n\)是否属于\(\mathbb{N}\)你都得不到\(\mathbb{N}_∞=\phi\),你还好意思为此举办科普讲座,你还好意思以此与我缠斗不休。你不信可把你【无穷交就是一种骤变】的数学创新理论,拿到中学或大学去做一次报告,看看有多少学生或老师认同你的观点?elim,你即使把我闹得身败名裂对你有什么好处?其实,名利对一个九十多岁的人已经不再那么重要.只不过你毫无口德,骂人太惨是可忍而孰不可忍?若待论坛的人觉醒过来,对你的大作进行仔细分析论证,你这个民科领袖的形像还有过去那么光辉吗?再有关于回复你多次,你都不解之疑你还是去看看方嘉琳《集合论》(参见方嘉琳《集合论》P82页3-7行定义2关于自然数的截段理论,和恩格斯悖论(参见恩格斯《反杜林论》2018中文版P53页9-17行;恩格斯《自然辩证法》P4页第一行“数学上的无限是实际存在的”自酌吧!
回复 支持 反对

使用道具 举报

发表于 2025-10-21 06:44 | 显示全部楼层

        elim,〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体(参见康托《超穷数理论基础》P42页第19-20行)〗这句话可是康托尔说的。另外,威尔斯特拉斯ε—N极限定义中所说的〖对任意预先给定的无论怎样小的正数ε,存在\(N_ε\)(=[\(\tfrac{1}{ε}]+1)\),当\(n>N_ε\)时,恒有\(|a_n-a|<ε\) . 〗这便是菲赫金哥尔茨定义集合\(N_∞=\)\(\{n|n>N_ε,\)\(N_ε\in\mathbb{N}\}\)理论根据。试问你那个“大儿科”的龚升是怎样解读\(n\to\infty\)的?难道他也把\(\mathbb{N}_∞\)解读成空集吗?如果\(\mathbb{N}_∞=\phi\),那么\(\displaystyle\lim_{n \to \infty}a_n=a\)中的\(n\to\infty\)还有什么数学意义?任意学科(分析数学、级数理论、理论力学、分析化学……)的极限运算又当如何进行?你宁可相信【一个人永远走不出一间屋子(芝诺悖论,即\(\tfrac{1}{2^n}\)永远不等0)】也不相信施笃兹定理。老实说对你提出的那个单减集列的极限集,无论是用中学交并运算的定义及运算规律,还是用北大周民强《实变函数论》定义1.8还是1.9,得到的都是\(\underset{n→∞}{\underline{lim}}A_n= \)\(\underset{n→∞}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。不管\(\displaystyle\lim_{n \to \infty}n\)是否属于\(\mathbb{N}\)你都得不到\(\mathbb{N}_∞=\phi\),你还好意思为此举办科普讲座,你还好意思以此与我缠斗不休。你不信可把你【无穷交就是一种骤变】的数学创新理论,拿到中学或大学去做一次报告,看看有多少学生或老师认同你的观点?elim,你即使把我闹得身败名裂对你有什么好处?其实,名利对一个九十多岁的人已经不再那么重要.只不过你毫无口德,骂人太惨是可忍而孰不可忍?若待论坛的人觉醒过来,对你的大作进行仔细分析论证,你这个民科领袖的形像还有过去那么光辉吗?再有关于回复你多次,你都不解之疑你还是去看看方嘉琳《集合论》(参见方嘉琳《集合论》P82页3-7行定义2关于自然数的截段理论,和恩格斯悖论(参见恩格斯《反杜林论》2018中文版P53页9-17行;恩格斯《自然辩证法》P4页第一行“数学上的无限是实际存在的”自酌吧!
回复 支持 反对

使用道具 举报

发表于 2025-10-22 05:14 | 显示全部楼层

        elim,〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体(参见康托《超穷数理论基础》P42页第19-20行)〗这句话可是康托尔说的。另外,威尔斯特拉斯ε—N极限定义中所说的〖对任意预先给定的无论怎样小的正数ε,存在\(N_ε\)(=[\(\tfrac{1}{ε}]+1)\),当\(n>N_ε\)时,恒有\(|a_n-a|<ε\) . 〗这便是菲赫金哥尔茨定义集合\(N_∞=\)\(\{n|n>N_ε,\)\(N_ε\in\mathbb{N}\}\)理论根据。试问你那个“大儿科”的龚升是怎样解读\(n\to\infty\)的?难道他也把\(\mathbb{N}_∞\)解读成空集吗?如果\(\mathbb{N}_∞=\phi\),那么\(\displaystyle\lim_{n \to \infty}a_n=a\)中的\(n\to\infty\)还有什么数学意义?任意学科(分析数学、级数理论、理论力学、分析化学……)的极限运算又当如何进行?你宁可相信【一个人永远走不出一间屋子(芝诺悖论,即\(\tfrac{1}{2^n}\)永远不等0)】也不相信施笃兹定理。老实说对你提出的那个单减集列的极限集,无论是用中学交并运算的定义及运算规律,还是用北大周民强《实变函数论》定义1.8还是1.9,得到的都是\(\underset{n→∞}{\underline{lim}}A_n= \)\(\underset{n→∞}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。不管\(\displaystyle\lim_{n \to \infty}n\)是否属于\(\mathbb{N}\)你都得不到\(\mathbb{N}_∞=\phi\),你还好意思为此举办科普讲座,你还好意思以此与我缠斗不休。你不信可把你【无穷交就是一种骤变】的数学创新理论,拿到中学或大学去做一次报告,看看有多少学生或老师认同你的观点?elim,你即使把我闹得身败名裂对你有什么好处?其实,名利对一个九十多岁的人已经不再那么重要.只不过你毫无口德,骂人太惨是可忍而孰不可忍?若待论坛的人觉醒过来,对你的大作进行仔细分析论证,你这个民科领袖的形像还有过去那么光辉吗?再有关于回复你多次,你都不解之疑你还是去看看方嘉琳《集合论》(参见方嘉琳《集合论》P82页3-7行定义2关于自然数的截段理论,和恩格斯悖论(参见恩格斯《反杜林论》2018中文版P53页9-17行;恩格斯《自然辩证法》P4页第一行“数学上的无限是实际存在的”自酌吧!
        此外,你他妈的不是在用康托尔定理证明[0,1]不可数吗?难道康托尔定理(既连续统假设)没有蕴涵\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)?你他妈的自自己去看看陶哲轩关于自然数集是无限集的证明。在那里陶哲轩明确揩出了\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)。你他他的一口一个畜牲不如,依我看你家那些与我同辈的人都他妈的畜牲不如,教出你这种既无学识,又不讲人伦的东西!另外〖有限集的基数叫自然数〗这句话出自余元希等著《初等代数研究》,余元希先生对此不仅有论述,还有相关证明。还有陶哲轩所说的“每个自然数都是有限数”的“限”是指每个自然数都小于它的后继。陶哲轩在什么地方说了\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?老吾老以及他人之老,幼吾幼以及他人之幼。数学论辩有理说理,无理就滚你妈的蛋!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 05:19 | 显示全部楼层

        elim,〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体(参见康托《超穷数理论基础》P42页第19-20行)〗这句话可是康托尔说的。另外,威尔斯特拉斯ε—N极限定义中所说的〖对任意预先给定的无论怎样小的正数ε,存在\(N_ε\)(=[\(\tfrac{1}{ε}]+1)\),当\(n>N_ε\)时,恒有\(|a_n-a|<ε\) . 〗这便是菲赫金哥尔茨定义集合\(N_∞=\)\(\{n|n>N_ε,\)\(N_ε\in\mathbb{N}\}\)理论根据。试问你那个“大儿科”的龚升是怎样解读\(n\to\infty\)的?难道他也把\(\mathbb{N}_∞\)解读成空集吗?如果\(\mathbb{N}_∞=\phi\),那么\(\displaystyle\lim_{n \to \infty}a_n=a\)中的\(n\to\infty\)还有什么数学意义?任意学科(分析数学、级数理论、理论力学、分析化学……)的极限运算又当如何进行?你宁可相信【一个人永远走不出一间屋子(芝诺悖论,即\(\tfrac{1}{2^n}\)永远不等0)】也不相信施笃兹定理。老实说对你提出的那个单减集列的极限集,无论是用中学交并运算的定义及运算规律,还是用北大周民强《实变函数论》定义1.8还是1.9,得到的都是\(\underset{n→∞}{\underline{lim}}A_n= \)\(\underset{n→∞}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。不管\(\displaystyle\lim_{n \to \infty}n\)是否属于\(\mathbb{N}\)你都得不到\(\mathbb{N}_∞=\phi\),你还好意思为此举办科普讲座,你还好意思以此与我缠斗不休。你不信可把你【无穷交就是一种骤变】的数学创新理论,拿到中学或大学去做一次报告,看看有多少学生或老师认同你的观点?elim,你即使把我闹得身败名裂对你有什么好处?其实,名利对一个九十多岁的人已经不再那么重要.只不过你毫无口德,骂人太惨是可忍而孰不可忍?若待论坛的人觉醒过来,对你的大作进行仔细分析论证,你这个民科领袖的形像还有过去那么光辉吗?再有关于回复你多次,你都不解之疑你还是去看看方嘉琳《集合论》(参见方嘉琳《集合论》P82页3-7行定义2关于自然数的截段理论,和恩格斯悖论(参见恩格斯《反杜林论》2018中文版P53页9-17行;恩格斯《自然辩证法》P4页第一行“数学上的无限是实际存在的”自酌吧!
        此外,你他妈的不是在用康托尔定理证明[0,1]不可数吗?难道康托尔定理(既连续统假设)没有蕴涵\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)?你他妈的自自己去看看陶哲轩关于自然数集是无限集的证明(参见陶哲轩《陶哲轩实分析》P58页第个9—14行)。在那里陶哲轩明确揩出了\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)。你他他的一口一个畜牲不如,依我看你家那些与我同辈的人都他妈的畜牲不如,教出你这种既无学识,又不讲人伦的东西!另外〖有限集的基数叫自然数〗这句话出自余元希等著《初等代数研究》(参见余元希等著《初等代数研究》上册P4定义1),余元希先生对此不仅有论述,还有相关证明。还有陶哲轩所说的“每个自然数都是有限数”的“限”是指每个自然数都小于它的后继。陶哲轩在什么地方说了\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?
        elim两年来的努力,发现了【\(\mathbb{N}\)无最大元,蕴涵着\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)\(\notin\mathbb{N}\)】,于是便据此大骂春风晚霞不识数。试问elim,你的\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)的依据是什么?如果\(\displaystyle\lim_{n \to \infty}n\) \(\in\)\(\mathbb{N}\),难道就会有\(\displaystyle\lim_{n \to \infty}n>\)\(\displaystyle\lim_{n \to \infty}2^n\)吗?难道就会有\(\displaystyle\lim_{n \to \infty}n>\)\(\displaystyle\lim_{n \to \infty}10^n\)吗?真他娘的扯谈!
        elim,老吾老以及他人之老,幼吾幼以及他人之幼。数学论辩有理说理,无理就滚你妈的蛋!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 06:07 | 显示全部楼层
elim,把一个被批驳数千次的帖子,每天在10分钟内又重发十余次,你以为这样就能把谬误变成真理,休想!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 07:29 | 显示全部楼层

        elim于2025-10-11 01:16发贴称【极限存在并被函数值达到的严格数学表述只能是\(\displaystyle\lim_{x\to \lambda}f(x)=\)\(f(\displaystyle\lim_{x\to\lambda})=\)\(f(\lambda)\) 即函数连续..然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】
        elim的这段论述,对于连续函数来说,当然是正确的,但elim确忽略了连续函数在区间端点的极限存在,的讨论,连续函数要求在连续区间的左端点右连续,右端点左连续。还有函数数间断点,要求函数在该点无定义:骊于函数\(f(x)=\tfrac{1}{x}\),\(f(x)\)在\(\infty\)是有定义的,因为无穷大量的倒数是无穷小量,这就是它的定义。其实春风晚霞〖只要极限存在,就一定可达〗的数学表达式就是\(\displaystyle\lim_{n \to \infty}f(n)\)=\(f(\displaystyle\lim_{n \to \infty}n)\),如\(a_n=f(n)=2^n\)\(\implies\)\(\displaystyle\lim_{n \to \infty}a_n=\)\(2^{\displaystyle\lim_{n \to \infty}n}\)至于e氏【然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】这是对春风晚霞的栽脏,换句话讲极限存在,但又不可达那也只是e氏数学的事,与现行数学无关,更春风晚霞无关!

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-10-26 01:06 , Processed in 0.084811 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表