数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\;\color{red}{\textbf{驴滚必挂黑板无例外}},\textbf{痞行必砸生意没商量}\)

[复制链接]
发表于 2025-11-17 17:36 | 显示全部楼层

        elim 2025-11-17 07:13发帖称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n 不等于任何自然数.  因为皮亚诺公理仅对自然数成立, 滚驴的 皮亚诺公理对 lim n 仍成立的阵鸣是预设 lim n为自然数的循环论证.春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \epsilon>0\iff \exists\)正整数\(N_\epsilon\)\((=[\tfrac{1}{\epsilon}]+1)\),当\(n>N_{\epsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n\)]+1)=\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\)
同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2n\)]+1)=\(\displaystyle\lim_{n \to \infty}2n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}2^n\)]+1)=\(\displaystyle\lim_{n \to \infty}2^n+1\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}10^n\)]+1)=\(\displaystyle\lim_{n \to \infty}10^n+1\)\(\in\mathbb{N}\);
……
        elim根本就不懂什么是无穷?什么是趋向无穷?什么是自然数?当然也就不知道什么是无穷自然数?什么是超穷自然数了?!elim关于自然数和无穷的一切证明,都充满了赌场流氓、市场泼妇的气息。  elim数学上的成就是靠你骂出来的吗?

回复 支持 反对

使用道具 举报

发表于 2025-11-17 21:17 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-11-17 21:34 编辑


        elim于今日下午边续百余次发贴称【以下是科普春霞吃屎成痴不识自然数的危害:据皮亚诺自然数定义及 Weierstrass 极限定义,lim n不等于任何然数.因为皮亚诺公理仅对自然数成立。 滚驴的皮亚诺公理对 lim n仍成立的阵鸣是预设 lim n为自然数的循环论证.lim n非自然数, 减法无意义, 回滚做空腚里泡汤春霞老痴, 驴变程度日益飙升!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈】
        为揭露elim借“科普”之名实施之实的反人类数学技俩。现分层次批驳于后:
        1、elim认为【据皮亚诺自然数定义及 Weierstrass 极限定义,lim n不等于任何然数.因为皮亚诺公理仅对自然数成立。】
        1)、根据Weierstrass 极限定义,\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)
〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\iff\)\(对\forall \varepsilon>0,\)\(\exists\)正整数\(N_\varepsilon\)\((=[\tfrac{1}{\varepsilon}]+1)\),当\(n>N_{\varepsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行)。特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则正整数(亦即自然数)\(N_\varepsilon\)\((=[\displaystyle\lim_{n \to \infty}n]\))=\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)〖证毕〗
        注意:自然数列是发散数列,并不妨碍\(\displaystyle\lim_{n \to \infty}n\)是自然数。因整个证明只用了\(\displaystyle\lim_{n \to \infty}n\)\(\to\infty\)这个性质,而这个性质洽为自然数列发散的必要条件。
        2)、皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        〖 分析:〗\(\displaystyle\lim_{n \to \infty}n\)显然满足皮亚诺公理第1、3条。所以,根据满足皮亚诺 公理的数是自然数(即自然数的皮亚诺公理定义),所以需且只需证明\(\displaystyle\lim_{n \to \infty}n\)存在后继,并且其后继也是自然数。即只需证明\(\displaystyle\lim_{n \to \infty}n+1\)\(\in\mathbb{N}\).
        〖证明:〗因为在现行数学中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)的数才是极限序数。自然数集\(\mathbb{N}\)中只有0是极限序数,而j=1时(1\(\cdot\omega\)既是极限序数,也是最小超穷数。由于\(\omega\)j是极限序数,所以\(\displaystyle\lim_{n \to \infty}n+1\)\(\ne\omega\),又因\(\omega\)后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1<\omega\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\),所以皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)成立!〖证毕〗
        2、elim说【皮亚诺公理对 lim n仍成立的阵鸣是预设 lim n为自然数的循环论证.】
试问学渣elim,2)证明中那步预设了lim n为自然数?又从那步开始【循环论证】的?其实你他妈的根本就不知道什么叫证明?也根本不知道如何对某个命题进行证明?在长达两年多对我的攻击和打压中你给出过一个像样的、严谨的证明吗?你有一个经得起严格推敲的帖子吗?你除了骂人,你有一张说理的帖子吗?真是无耻至极!
        3、elim的【lim n非自然数, 减法无意义】是伪命题
elim你凭什么说lim n非自然数?是因为lim n自是然数,你的【无穷交就是一种骤变】就要坍塌吗?是因为lim n自是然数,你的【\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n\)大于\(\{n\}\)所有自然数、……】等谎言就要穿帮吗?elim你不是在反对春风晚霞,而是在反对威尔斯特拉斯、在反对康托尔、在反对施笃兹定理、在反对菲赫金哥尔茨、在反对周民强、在反对方嘉琳、在反对……!你以为你算什么东西!至于【减法无意义】你证明过吗?信口雌黄,你还算数学人吗?

回复 支持 反对

使用道具 举报

发表于 2025-11-19 17:50 | 显示全部楼层

         为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \varepsilon>0\iff \exists\)正整数\(N_\varepsilon\)\((=[\tfrac{1}{\varepsilon}]+1)\),当\(n>N_{\varepsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符叫表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}n\))=\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)
        同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}2n\))=\(\displaystyle\lim_{n \to \infty}2n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}2^n\))=\(\displaystyle\lim_{n \to \infty}2^n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}10^n\))=\(\displaystyle\lim_{n \to \infty}10^n\)\(\in\mathbb{N}\);
……      
回复 支持 反对

使用道具 举报

发表于 2025-11-20 06:05 | 显示全部楼层

       【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-21 21:34 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-22 06:25 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-22 07:44 | 显示全部楼层

       【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-22 09:56 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-24 06:41 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-25 02:03 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-11-25 02:04 编辑


         为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \varepsilon>0\iff \exists\)正整数\(N_\varepsilon\)\((=[\tfrac{1}{\varepsilon}]+1)\),当\(n>N_{\varepsilon}\),有\(|x_n-a|<{\varepsilon}\)( Weierstrass 极限定义的符号表示式参见同济大学《高等数学》第七版 上册P21页第24行),特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}n\))=\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)
        同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}2n\))=\(\displaystyle\lim_{n \to \infty}2n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}2^n\))=\(\displaystyle\lim_{n \to \infty}2^n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\((=\displaystyle\lim_{n \to \infty}10^n\))=\(\displaystyle\lim_{n \to \infty}10^n\)\(\in\mathbb{N}\);
……      
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-29 05:17 , Processed in 0.086554 second(s), 12 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表