|
本帖最后由 愚工688 于 2017-8-24 02:37 编辑
偶数表为两个素数和的表法数数量是有规律的波动的。
偶数M的表法数数量波动的下限用一个偶数表法数区域下界函数infS(m)表示,则这个函数是单调上升的函数;
表法数数量波动的幅度用一个参数表示,即为波动系数K(m),其值只与该偶数含有的奇素数因子有关。
可以看到偶数表法数下界计算值 inf(m)=infS(m)*K(m),其与真值的相对误差很小,即从下限方向逼近了真值。
G(2017070300) = 5197904;
inf( 2017070300 )≈ 5156628.0 , Δ≈-0.0079,infS( 2017070300 )= 3177566.42 , k(m)= 1.62282
G(2017070302) = 3496132;
inf( 2017070302 )≈ 3466436.1 , Δ≈-0.008494,infS( 2017070302 )= 3177566.42 , k(m)= 1.09091
G(2017070304) = 6631608;
inf( 2017070304 )≈ 6574275.4 , Δ≈-0.008645,infS( 2017070304 )= 3177566.42 , k(m)= 2.06897
G(2017070306) = 3204009;
inf( 2017070306 )≈ 3177731.1 , Δ≈-0.0082,infS( 2017070306 )= 3177566.43 , k(m)= 1.00005
G(2017070308) = 3570308;
inf( 2017070308 )≈ 3541360.8 , Δ≈-0.0081,infS( 2017070308 )= 3177566.43 , k(m)= 1.11449
G(2017070310) = 8546996;
inf( 2017070310 )≈ 8476040.0 , Δ≈-0.0083,infS( 2017070310 )= 3177566.43 , k(m)= 2.66746
G(2017070312) = 3204253;
inf( 2017070312 )≈ 3177566.4 , Δ≈-0.0083,infS( 2017070312 )= 3177566.44 , k(m)= 1
G(2017070314) = 3845448;
inf( 2017070314 )≈ 3814135.0 , Δ≈-0.0081,infS( 2017070314 )= 3177566.44 , k(m)= 1.20033
G(2017070316) = 6647769;
inf( 2017070316 )≈ 6591768.1 , Δ≈-0.0084,infS( 2017070316 )= 3177566.44 , k(m)= 2.07447
G(2017070318) = 3312769;
inf( 2017070318 )≈ 3287467.3 , Δ≈-0.0076,infS( 2017070318 )= 3177566.45 , k(m)= 1.03459
G(2017070320) = 4273722;
inf( 2017070320 )≈ 4239025.7 , Δ≈-0.0081,infS( 2017070320 )= 3177566.45 , k(m)= 1.33405
下面表法数计算值的相对误差就不计算了,想核实相对误差值大小的网友可以自行验算,主要是可以看到表法数区域下界值的单调上升。
inf( 2017070322 )≈ 6355132.9 , Δ≈,infS( 2017070322 )= 3177566.45 , k(m)= 2
inf( 2017070324 )≈ 3364482.1 , Δ≈,infS( 2017070324 )= 3177566.46 , k(m)= 1.05882
inf( 2017070326 )≈ 3178822.9 , Δ≈,infS( 2017070326 )= 3177566.46 , k(m)= 1.0004
inf( 2017070328 )≈ 8319446.8 , Δ≈,infS( 2017070328 )= 3177566.46 , k(m)= 2.61818
inf( 2017070330 )≈ 5041562.8 , Δ≈,infS( 2017070330 )= 3177566.47 , k(m)= 1.58661
inf( 2017070332 )≈ 3389404.2 , Δ≈,infS( 2017070332 )= 3177566.47 , k(m)= 1.06667
inf( 2017070334 )≈ 6362600.8 , Δ≈,infS( 2017070334 )= 3177566.47 , k(m)= 2.00235
inf( 2017070336 )≈ 3177566.5 , Δ≈,infS( 2017070336 )= 3177566.48 , k(m)= 1
inf( 2017070338 )≈ 3179655.61 , Δ≈,infS( 2017070338 )= 3177566.48 , k(m)= 1.00066
inf( 2017070340 )≈ 8549848.56 , Δ≈,infS( 2017070340 )= 3177566.48 , k(m)= 2.69069
inf( 2017070342 )≈ 3813079.79 , Δ≈,infS( 2017070342 )= 3177566.48 , k(m)= 1.2
inf( 2017070344 )≈ 3231073.89 , Δ≈,infS( 2017070344 )= 3177566.49 , k(m)= 1.01684
inf( 2017070346 )≈ 6363617.82 , Δ≈,infS( 2017070346 )= 3177566.49 , k(m)= 2.00267
inf( 2017070348 )≈ 3177566.5 , Δ≈,infS( 2017070348 )= 3177566.49 , k(m)= 1
inf( 2017070350 )≈ 4393672.2 , Δ≈,infS( 2017070350 )= 3177566.5 , k(m)= 1.38272
inf( 2017070352 )≈ 7061258.9 , Δ≈,infS( 2017070352 )= 3177566.5 , k(m)= 2.22222
inf( 2017070354 )≈ 3467399.67 , Δ≈,infS( 2017070354 )= 3177566.5 , k(m)= 1.09121
inf( 2017070356 )≈ 3814975.85 , Δ≈,infS( 2017070356 )= 3177566.51 , k(m)= 1.2006
inf( 2017070358 )≈ 6518085.16 , Δ≈,infS( 2017070358 )= 3177566.51 , k(m)= 2.05128
inf( 2017070360 )≈ 4236755.36 , Δ≈,infS( 2017070360 )= 3177566.51 , k(m)= 1.33333
inf( 2017070362 )≈ 3364482.2 , Δ≈,infS( 2017070362 )= 3177566.52 , k(m)= 1.05882
inf( 2017070364 )≈ 6374103.59 , Δ≈,infS( 2017070364 )= 3177566.52 , k(m)= 2.00597
inf( 2017070366 )≈ 3517994.19 , Δ≈,infS( 2017070366 )= 3177566.52 , k(m)= 1.10713
inf( 2017070368 )≈ 3231313.65 , Δ≈,infS( 2017070368 )= 3177566.53 , k(m)= 1.01691
inf( 2017070370 )≈ 10190711.56 , Δ≈,infS( 2017070370 )= 3177566.53 , k(m)= 3.20708
inf( 2017070372 )≈ 3178339.86 , Δ≈,infS( 2017070372 )= 3177566.53 , k(m)= 1.00024
inf( 2017070374 )≈ 3553407.74 , Δ≈,infS( 2017070374 )= 3177566.54 , k(m)= 1.11828
inf( 2017070376 )≈ 6760185.52 , Δ≈,infS( 2017070376 )= 3177566.54 , k(m)= 2.12747
inf( 2017070378 )≈ 3182493.01 , Δ≈,infS( 2017070378 )= 3177566.54 , k(m)= 1.00155
inf( 2017070380 )≈ 4670566.72 , Δ≈,infS( 2017070380 )= 3177566.54 , k(m)= 1.46986
inf( 2017070382 )≈ 6490713.53 , Δ≈,infS( 2017070382 )= 3177566.55 , k(m)= 2.04267
inf( 2017070384 )≈ 3813079.87 , Δ≈,infS( 2017070384 )= 3177566.55 , k(m)= 1.2
inf( 2017070386 )≈ 3177833.02 , Δ≈,infS( 2017070386 )= 3177566.55 , k(m)= 1.00008
inf( 2017070388 )≈ 6405974.19 , Δ≈,infS( 2017070388 )= 3177566.56 , k(m)= 2.016
inf( 2017070390 )≈ 4236755.42 , Δ≈,infS( 2017070390 )= 3177566.56 , k(m)= 1.33333
inf( 2017070392 )≈ 3285209.95 , Δ≈,infS( 2017070392 )= 3177566.56 , k(m)= 1.03388
inf( 2017070394 )≈ 6419326.41 , Δ≈,infS( 2017070394 )= 3177566.57 , k(m)= 2.0202
inf( 2017070396 )≈ 3599857.56 , Δ≈,infS( 2017070396 )= 3177566.57 , k(m)= 1.1329
inf( 2017070398 )≈ 3833254.92 , Δ≈,infS( 2017070398 )= 3177566.57 , k(m)= 1.20635
inf( 2017070400 )≈ 9577450.15 , Δ≈,infS( 2017070400 )= 3177566.58 , k(m)= 3.01408 |
|