|

楼主 |
发表于 2024-3-20 23:12
|
显示全部楼层
2024年3月19日18:19周二农历二月初十
现在我们分析一下孪中加最密6生素数(P,P+4,P+6,P+10,P+12,P+16)的中项之和的分布。
对于此类问题,我们一般情况下是从,剩余类个数与合成方法数的关系恒等式谈起,
\((P-2)*(P-6)=P^2-8P+12=P*(P-8)+12\),常数项是12,这12种合成方法,花落谁家,
取决于内部合成,当然需要满足一定的条件,就是P-8≥0,即素数P≥8,所以,要想
步入正规(满射),需要素数P≥11,这样对于小于11的素数P,要具体素数具体分析。
它们就只能分析外部合成(弱化的合成,合二为一的整体分析)。
从内部合成看,常数12种合成方法涉及到10种剩余类,只有2个剩余类分到2种合成方法
(在平均数以外),其余8个剩余类,每个剩余类只有一个合成方法(常数项12种之一)
合成方法数与剩余类的关系恒等式:
\((P-2)*(P-6)=2*(P-6)+8*(P-7)+(P-10)*(P-8)\)
2024年3月20日22:15周三农历二月十一
从外部合成,分析公共系数,有了公共系数,加上调节系数,对一切都能迎刃而解。
对于素数2来说,就是:\(2*{1\over1}\),对于素数3来说,就是:\(3*{1\over1}\),
对于素数5来说,就是:\(5*{1\over3}\),对于素数7来说,就是:\(7*{1\over5}\),
对于素数11来说,就是:\(11*{{(11-8)}\over{(11-2)*(11-6)}}\),,
对于素数13来说,就是:\(13*{{(13-8)}\over{(13-2)*(13-6)}}\)
当素数P≥11时,就有统一表达式:\(P*{{(P-8)}\over{(P-2)*(P-6)}}\)
从素数2到素数7,经过约分是:14,然后当素数P≥11后,统一口径,都是:
\(P*{{(P-8)}\over{(P-2)*(P-6)}}\),此极限交给vfp了,因为我只会vfp编程,其他的不会。
14*∏(\({{P_i*(P_i-8)}\over{(P_i-2)*(P_i-6)}}\)),\(P_i\)≥11,\(P_i\)∈素数,i=1,i趋于∞。
上式的极限值:6.504078220968740000
14*\(\displaystyle\prod_{i=1}^∞ ({{P_i*(P_i-8)}\over{(P_i-2)*(P_i-6)}}) \),\(P_i\)≥11,\(P_i\)∈素数。
|
|