数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge^\star\textbf{ 滚驴}\color{red}{\textbf{回滚做空定理}}\textbf{泡汤!}\)

[复制链接]
发表于 2025-10-23 06:09 | 显示全部楼层
elim,把一个被批驳数千次的帖子,每天在10分钟内又重发十余次,你以为这样就能把谬误变成真理,休想!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 07:31 | 显示全部楼层

        elim于2025-10-11 01:16发贴称【极限存在并被函数值达到的严格数学表述只能是\(\displaystyle\lim_{x\to \lambda}f(x)=\)\(f(\displaystyle\lim_{x\to\lambda})=\)\(f(\lambda)\) 即函数连续..然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】
        elim的这段论述,对于连续函数来说,当然是正确的,但elim确忽略了连续函数在区间端点的极限存在,的讨论,连续函数要求在连续区间的左端点右连续,右端点左连续。还有函数数间断点,要求函数在该点无定义:骊于函数\(f(x)=\tfrac{1}{x}\),\(f(x)\)在\(\infty\)是有定义的,因为无穷大量的倒数是无穷小量,这就是它的定义。其实春风晚霞〖只要极限存在,就一定可达〗的数学表达式就是\(\displaystyle\lim_{n \to \infty}f(n)\)=\(f(\displaystyle\lim_{n \to \infty}n)\),如\(a_n=f(n)=2^n\)\(\implies\)\(\displaystyle\lim_{n \to \infty}a_n=\)\(2^{\displaystyle\lim_{n \to \infty}n}\)至于e氏【然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】这是对春风晚霞的栽脏,换句话讲极限存在,但又不可达那也只是e氏数学的事,与现行数学无关,更春风晚霞无关!

回复 支持 反对

使用道具 举报

发表于 2025-10-23 10:25 | 显示全部楼层

        试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 10:29 | 显示全部楼层

        elim于2025-10-11 01:16发贴称【极限存在并被函数值达到的严格数学表述只能是\(\displaystyle\lim_{x\to \lambda}f(x)=\)\(f(\displaystyle\lim_{x\to\lambda})=\)\(f(\lambda)\) 即函数连续..然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】
        elim的这段论述,对于连续函数来说,当然是正确的,但elim确忽略了连续函数在区间端点的极限存在,的讨论,连续函数要求在连续区间的左端点右连续,右端点左连续。还有函数数间断点,要求函数在该点无定义:骊于函数\(f(x)=\tfrac{1}{x}\),\(f(x)\)在\(\infty\)是有定义的,因为无穷大量的倒数是无穷小量,这就是它的定义。其实春风晚霞〖只要极限存在,就一定可达〗的数学表达式就是\(\displaystyle\lim_{n \to \infty}f(n)\)=\(f(\displaystyle\lim_{n \to \infty}n)\),如\(a_n=f(n)=2^n\)\(\implies\)\(\displaystyle\lim_{n \to \infty}a_n=\)\(2^{\displaystyle\lim_{n \to \infty}n}\)至于e氏【然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】这是对春风晚霞的栽脏,换句话讲极限存在,但又不可达那也只是e氏数学的事,与现行数学无关,更春风晚霞无关!

回复 支持 反对

使用道具 举报

发表于 2025-10-23 11:25 | 显示全部楼层

        试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 11:35 | 显示全部楼层

        试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 11:49 | 显示全部楼层

        试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 21:25 | 显示全部楼层

     对于〖试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!〗
        elim对上面问题作出了如下回答:
     【 \(\{2n\}\)、\(\{10^n\}\)等都是自然数列\(\{n\}\)的子列.它们的极限都是\(Sup\mathbb{N}\)即分析中的\(+\infty\)..定义\(A_n=\{m|n<m\in\mathbb{N}\}\)\((n\in\mathbb{N})\),则\(\mathbb{N}= \displaystyle\bigcup_{n=1}^{\infty}A_n\ne\)\(\{1,2,3,…\)\(\displaystyle\lim_{n \to \infty}n\}\)因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】
        然而,这个回答elim仍没有说出个子午卯酉,首先\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}10^n\)和\(\displaystyle\lim_{n \to \infty}n\)是可以比较大小的。因为\(\displaystyle\lim_{n \to \infty}\tfrac{2n}{n}=2\), \(\displaystyle\lim_{n \to \infty}\tfrac{10^n}{n}=\infty\),所以\(\displaystyle\lim_{n \to \infty}2n\)和\(\displaystyle\lim_{n \to \infty}n\)是同阶无穷大,\(\displaystyle\lim_{n \to \infty}10^n\)是\(\displaystyle\lim_{n \to \infty}n\)的高阶无穷大!elim对无穷大的认知还停留在3000多年印度人的对无穷大认知的程度上。所以你无法理解\(\displaystyle\lim_{n \to \infty}(n-1)\)、\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}(n+1)\)是三个不同的自然数。当然你也就不明白你错没错,错在哪里了。
        其次elim的【因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】的说法是错误的。有限集的基数是可以生成\(\displaystyle\lim_{n \to \infty}n\)的,具体生成过程可参看余希元等著《初等代数研究》P4页定义1:有限集的基数叫做自然数;也可参看张峰陶然著《集合论基础教程》P83页冯\(\cdot\)诺依曼自然数生成法的解读。余希元、张峰他们研究的自然数体系都是由\(\phi\)这个特珠的有限集生成的。康托尔的幂集定理(即连续统假设)不也说明由基数为\(\aleph_0\)生成的自然数有\(2^{\aleph_0}\)个吗?elim,周民强《实变函数论》定义1.8与1.9是自洽的,你由周民强《实变函数论》定义1.8得不到\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)只能说明你没有弄懂〖有限集的基数是自然数〗的真正含意!所以你虽然作出了牵强的解释,但你仍没有说个子午卯酉,所以你仍畜生不如!

回复 支持 反对

使用道具 举报

发表于 2025-10-24 03:42 | 显示全部楼层

     对于〖试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!〗
        elim对上面问题作出了如下回答:
     【 \(\{2n\}\)、\(\{10^n\}\)等都是自然数列\(\{n\}\)的子列.它们的极限都是\(Sup\mathbb{N}\)即分析中的\(+\infty\)..定义\(A_n=\{m|n<m\in\mathbb{N}\}\)\((n\in\mathbb{N})\),则\(\mathbb{N}= \displaystyle\bigcup_{n=1}^{\infty}A_n\ne\)\(\{1,2,3,…\)\(\displaystyle\lim_{n \to \infty}n\}\)因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】
        然而,这个回答elim仍没有说出个子午卯酉,首先\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}10^n\)和\(\displaystyle\lim_{n \to \infty}n\)是可以比较大小的。因为\(\displaystyle\lim_{n \to \infty}\tfrac{2n}{n}=2\), \(\displaystyle\lim_{n \to \infty}\tfrac{10^n}{n}=\infty\),所以\(\displaystyle\lim_{n \to \infty}2n\)和\(\displaystyle\lim_{n \to \infty}n\)是同阶无穷大,\(\displaystyle\lim_{n \to \infty}10^n\)是\(\displaystyle\lim_{n \to \infty}n\)的高阶无穷大!elim对无穷大的认知还停留在3000多年印度人的对无穷大认知的程度上。所以你无法理解\(\displaystyle\lim_{n \to \infty}(n-1)\)、\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}(n+1)\)是三个不同的自然数。当然你也就不明白你错没错,错在哪里了。
        其次elim的【因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】的说法是错误的。有限集的基数是可以生成\(\displaystyle\lim_{n \to \infty}n\)的,具体生成过程可参看余希元等著《初等代数研究》P4页定义1:有限集的基数叫做自然数;也可参看张峰陶然著《集合论基础教程》P83页冯\(\cdot\)诺依曼自然数生成法的解读。余希元、张峰他们研究的自然数体系都是由\(\phi\)这个特殊的有限集生成的。康托尔的幂集定理(即连续统假设)不也说明由基数为\(\aleph_0\)生成的自然数有\(2^{\aleph_0}\)个吗?elim,周民强《实变函数论》定义1.8与1.9是自洽的,你由周民强《实变函数论》定义1.8得不到\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)只能说明你没有弄懂〖有限集的基数是自然数〗的真正含意!所以你虽然作出了牵强的解释,但你仍没有说出个子午卯酉,所以你仍是畜生不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-24 06:32 | 显示全部楼层

        elim,春氏可达是基于现行数学框架提出来的。所以春风晚霞论证过程中所需要的概念基本上是现行数学教科书上都有的概念。你的帖子的特点是流氓语言多、自定义的概念、方法多,并且你自定义的概念、方法一般都与现行数学相悖。这样你字面上是在反对春风晚霞,实质上你是在反对现行数学。表面上你是在反对春氏目测法,实质上是反对皮亚诺、康托尔、威尔斯特斯、菲赫金哥尔茨、周民强、……,你说过你的数学讲论证、讲自洽。其实你的数学最不讲论证也不讲自洽,你讲的是戈陪尔效应。只可惜数学上谎言干遍仍是谎言。你表面上证明了春氏可达反例存在,其实你提出的这些反例也是在e氏数学中存在。好比说人们都说“人不吃屎”,你偏要定义你就要吃屎,从而否定人不吃屎的正确性,你说这样的论证荒唐不荒唐?!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-10-26 01:05 , Processed in 0.081454 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表