数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 愚工688

高精度计算大偶数表为两个素数和的表法数值的实例(以当天日期为随机数选择偶数)

  [复制链接]
 楼主| 发表于 2018-1-5 12:52 | 显示全部楼层
偶数M表为两个素数和的表法数值的变化是有规律性的,因此是能够比较精确的进行计算的。
今天的日期是2018年01月05日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180105×1000起的连续偶数M表为两个素数和的表法数值Sp(m)以及计算值的精度 jdz。
注:素对真值s(m)=G(M).两个不同程序的各自表示形式。
G(20180105000) = 41463005;Sp( 20180105000 *)≈  41444267.6 , jdz =sp(m)/s(m) ≈0.999548;
G(20180105002) = 26564218;Sp( 20180105002 *)≈  26554968.7 , jdz =sp(m)/s(m) ≈0.999652;
G(20180105004) = 51735694;Sp( 20180105004 *)≈  51710968.7 , jdz =sp(m)/s(m) ≈0.999522;
G(20180105006) = 25904661;Sp( 20180105006 *)≈  25886824.3 , jdz =sp(m)/s(m) ≈0.999311;
G(20180105008) = 31096050;Sp( 20180105008 *)≈  31084144.5 , jdz =sp(m)/s(m) ≈0.999617;
G(20180105010) = 86628206;Sp( 20180105010 *)≈  86586594.6 , jdz =sp(m)/s(m) ≈0.999520;
G(20180105012) = 25868800;Sp( 20180105012 *)≈  25855484.4 , jdz =sp(m)/s(m) ≈0.999485;
G(20180105014) = 25892566;Sp( 20180105014 *)≈  25885033.5 , jdz =sp(m)/s(m) ≈0.999709;
G(20180105016) = 51734341;Sp( 20180105016 *)≈  51710968.7 , jdz =sp(m)/s(m) ≈0.999548;
G(20180105018) = 25877734;Sp( 20180105018 *)≈  25867021.8 , jdz =sp(m)/s(m) ≈0.999586;
G(20180105020) = 34911418;Sp( 20180105020 *)≈  34899354.9 , jdz =sp(m)/s(m) ≈0.999654;
G(20180105022) = 69046226;Sp( 20180105022 *)≈  69021627.0 , jdz =sp(m)/s(m) ≈0.999644;
G(20180105024) = 26495006;Sp( 20180105024 *)≈  26486105.9 , jdz =sp(m)/s(m) ≈0.999664;
G(20180105026) = 25889652;Sp( 20180105026 *)≈  25875388.5 , jdz =sp(m)/s(m) ≈0.999449;
G(20180105028) = 53206464;Sp( 20180105028 *)≈  53188425.0 , jdz =sp(m)/s(m) ≈0.999661;
G(20180105030) = 35682822;Sp( 20180105030 *)≈  35671651.0 , jdz =sp(m)/s(m) ≈0.999687;
G(20180105032) = 25866475;Sp( 20180105032 *)≈  25855484.4 , jdz =sp(m)/s(m) ≈0.999575;
G(20180105034) = 56117819;Sp( 20180105034 *)≈  56093254.3 , jdz =sp(m)/s(m) ≈0.999562;
G(20180105036) = 33860154;Sp( 20180105036 *)≈  33847179.6 , jdz =sp(m)/s(m) ≈0.999617;
G(20180105038) = 26018253;Sp( 20180105038 *)≈  26006686.1 , jdz =sp(m)/s(m) ≈0.999555;
G(20180105040) = 69705806;Sp( 20180105040 *)≈  69673726.4 , jdz =sp(m)/s(m) ≈0.999540;
G(20180105042) = 25867588;Sp( 20180105042 *)≈  25856592.6 , jdz =sp(m)/s(m) ≈0.999575;
G(20180105044) = 29473625;Sp( 20180105044 *)≈  29464939.5 , jdz =sp(m)/s(m) ≈0.999705;
G(20180105046) = 51799973;Sp( 20180105046 *)≈  51781132.9 , jdz =sp(m)/s(m) ≈0.999636;
G(20180105048) = 27404572;Sp( 20180105048 *)≈  27397682.8 , jdz =sp(m)/s(m) ≈0.999749;
Sp( 20180105050 *)≈  41778366.9 , jdz =sp(m)/s(m) ≈
start time =11:56:59,end time=12:06:33 ,time use =

显然,全部25个连续偶数的素对数值的计算值的精度值都在0.999以上。


 楼主| 发表于 2018-1-10 15:09 | 显示全部楼层
偶数M表为两个素数和的表法数值的变化是有规律性的,因此是能够比较精确的进行计算的。
今天的日期是2018年01月10日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180110×1000起的连续偶数M表为两个素数和的表法数值Sp(m)以及计算值的精度 jdz。
注:素对真值s(m)=G(M).两个不同程序的各自表示形式。

G(20180110000) = 34558411;Sp( 20180110000 *)≈  34545640.7 , jdz =sp(m)/s(m) ≈0.999630,
G(20180110002) = 56428257;Sp( 20180110002 *)≈  56411979.8 , jdz =sp(m)/s(m) ≈0.999712,
G(20180110004) = 25867197;Sp( 20180110004 *)≈  25856281.8 , jdz =sp(m)/s(m) ≈0.999578,
G(20180110006) = 31043475;Sp( 20180110006 *)≈  31026588.9 , jdz =sp(m)/s(m) ≈0.999456,
G(20180110008) = 52146752;Sp( 20180110008 *)≈  52124669.4 , jdz =sp(m)/s(m) ≈0.999577,
G(20180110010) = 34486920;Sp( 20180110010 *)≈  34473987.7 , jdz =sp(m)/s(m) ≈0.999625,
G(20180110012) = 26636074;Sp( 20180110012 *)≈  26620559.8 , jdz =sp(m)/s(m) ≈0.999418,
G(20180110014) = 51834204;Sp( 20180110014 *)≈  51819390.3 , jdz =sp(m)/s(m) ≈0.999714,
G(20180110016) = 29004268;Sp( 20180110016 *)≈  28996812.1 , jdz =sp(m)/s(m) ≈0.999743,
G(20180110018) = 25868921;Sp( 20180110018 *)≈  25855490.8 , jdz =sp(m)/s(m) ≈0.999481,
G(20180110020) = 83340757;Sp( 20180110020 *)≈  83313072.7 , jdz =sp(m)/s(m) ≈0.999668,
G(20180110022) = 25868166;Sp( 20180110022 *)≈  25855490.8 , jdz =sp(m)/s(m) ≈0.999510,
G(20180110024) = 27515944;Sp( 20180110024 *)≈  27503809.6 , jdz =sp(m)/s(m) ≈0.999559,
G(20180110026) = 54795521;Sp( 20180110026 *)≈  54772212.1 , jdz =sp(m)/s(m) ≈0.999575,
G(20180110028) = 28391697;Sp( 20180110028 *)≈  28381182.4 , jdz =sp(m)/s(m) ≈0.999630,
G(20180110030) = 34564000;Sp( 20180110030 *)≈  34549754.7 , jdz =sp(m)/s(m) ≈0.999588,
G(20180110032) = 55176835;Sp( 20180110032 *)≈  55158380.3 , jdz =sp(m)/s(m) ≈0.999666,
G(20180110034) = 31040049;Sp( 20180110034 *)≈  31026588.9 , jdz =sp(m)/s(m) ≈0.999566,
G(20180110036) = 26303544;Sp( 20180110036 *)≈  26300948.8 ,jdz =sp(m)/s(m) ≈0.999901,
G(20180110038) = 57486141;Sp( 20180110038 *)≈  57456646.2 ,jdz =sp(m)/s(m) ≈0.999487,

显然,全部20个连续偶数的素对数值计算值的精度值都在0.999以上。

 楼主| 发表于 2018-1-15 12:55 | 显示全部楼层
偶数M表为两个素数和的表法数值的变化是有规律性的,因此是能够比较精确的进行计算的。
今天的日期是2018年01月15日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180115×1000起的连续偶数M表为两个素数和的表法数值Sp(m)以及计算值的精度 jdz。
注:素对真值s(m)=G(M).两个不同程序的各自表示形式。

G(20180115000) = 70669781;Sp( 20180115000 *)≈  70636424.5 , jdz =sp(m)/s(m) ≈0.999528;
G(20180115002) = 25878539;Sp( 20180115002 *)≈  25867223.0 , jdz =sp(m)/s(m) ≈0.999563;
G(20180115004) = 33265074;Sp( 20180115004 *)≈  33249145.0 , jdz =sp(m)/s(m) ≈0.999521;
G(20180115006) = 51722925;Sp( 20180115006 *)≈  51710994.3 , jdz =sp(m)/s(m) ≈0.999769;
G(20180115008) = 25869525;Sp( 20180115008 *)≈  25855497.2 , jdz =sp(m)/s(m) ≈0.999458;
G(20180115010) = 38321747;Sp( 20180115010 *)≈  38304440.2 , jdz =sp(m)/s(m) ≈0.999548;
G(20180115012) = 54292136;Sp( 20180115012 *)≈  54269409.4 , jdz =sp(m)/s(m) ≈0.999581;
G(20180115014) = 25867110;Sp( 20180115014 *)≈  25855873.0 , jdz =sp(m)/s(m) ≈0.999566;
G(20180115016) = 25871658;Sp( 20180115016 *)≈  25855497.2 , jdz =sp(m)/s(m) ≈0.999375;
G(20180115018) = 63848512;Sp( 20180115018 *)≈  63826141.6 , jdz =sp(m)/s(m) ≈0.999650;
G(20180115020) = 37641277;Sp( 20180115020 *)≈  37628963.5 , jdz =sp(m)/s(m) ≈0.999673;
G(20180115022) = 25869746;Sp( 20180115022 *)≈  25855497.2 , jdz =sp(m)/s(m) ≈0.999449;
G(20180115024) = 51743130;Sp( 20180115024 *)≈  51723135.2 , jdz =sp(m)/s(m) ≈0.999614;
G(20180115026) = 26225031;Sp( 20180115026 *)≈  26217499.2 , jdz =sp(m)/s(m) ≈0.999713;
G(20180115028) = 26246870;Sp( 20180115028 *)≈  26240965.9 , jdz =sp(m)/s(m) ≈0.999775;
G(20180115030) = 74267216;Sp( 20180115030 *)≈  74231857.4 , jdz =sp(m)/s(m) ≈0.999524;
G(20180115032) = 35095544;Sp( 20180115032 *)≈  35078803.2 , jdz =sp(m)/s(m) ≈0.999523;
G(20180115034) = 25864075;Sp( 20180115034 *)≈  25855497.2 , jdz =sp(m)/s(m) ≈0.999668;
G(20180115036) = 52659311;Sp( 20180115036 *)≈  52633051.6 , jdz =sp(m)/s(m) ≈0.999501;
G(20180115038) = 27613952;Sp( 20180115038 *)≈  27600686.5 , jdz =sp(m)/s(m) ≈0.999520;
G(20180115040) = 34485853;Sp( 20180115040 *)≈  34473996.3 , jdz =sp(m)/s(m) ≈0.999656;
G(20180115042) = 55406230;Sp( 20180115042 *)≈  55381636.9 , jdz =sp(m)/s(m) ≈0.999556;
G(20180115044) = 26821181;Sp( 20180115044 *)≈  26813108.2 , jdz =sp(m)/s(m) ≈0.999699;
G(20180115046) = 34082467;Sp( 20180115046 *)≈  34074358.7 , jdz =sp(m)/s(m) ≈0.999762;
G(20180115048) = 53055061;Sp( 20180115048 *)≈  53036917.4 , jdz =sp(m)/s(m) ≈0.999658;
Sp( 20180115050 *)≈  35240085.1 , jdz =sp(m)/s(m) ≈
start time =12:09:08,end time=12:18:31 ,

显然,全部25个连续偶数的素对数值计算值的精度值都在0.999以上。
发表于 2018-1-20 17:24 | 显示全部楼层
好文要顶起来!
 楼主| 发表于 2018-1-20 17:35 | 显示全部楼层
偶数M表为两个素数和的表法数值的变化是有规律性的,因此是能够比较精确的进行计算的。
今天的日期是2018年01月20日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180120×1000起的连续偶数M表为两个素数和的表法数值Sp(m)以及计算值的精度 jdz。
注:素对真值s(m)=G(M).两个不同程序的各自表示形式。

G(20180120000) = 34975516;Sp( 20180120000 *)≈  34964614.1 , jdz =sp(m)/s(m) ≈ 0.999688;
G(20180120002) = 31268660;Sp( 20180120002 *)≈  31256431.0 , jdz =sp(m)/s(m) ≈ 0.999609;
G(20180120004) = 57479889;Sp( 20180120004 *)≈  57456674.6 , jdz =sp(m)/s(m) ≈ 0.999596;
G(20180120006) = 27094869;Sp( 20180120006 *)≈  27086718.0 , jdz =sp(m)/s(m) ≈ 0.999699;
G(20180120008) = 26185560;Sp( 20180120008 *)≈  26174707.3 , jdz =sp(m)/s(m) ≈ 0.999586;
G(20180120010) = 68984570;Sp( 20180120010 *)≈  68953509.4 , jdz =sp(m)/s(m) ≈ 0.999550;
G(20180120012) = 28281983;Sp( 20180120012 *)≈  28269104.6 , jdz =sp(m)/s(m) ≈ 0.999545;
G(20180120014) = 26080960;Sp( 20180120014 *)≈  26072743.6 , jdz =sp(m)/s(m) ≈ 0.999685;
G(20180120016) = 62120229;Sp( 20180120016 *)≈  62095655.2 , jdz =sp(m)/s(m) ≈ 0.999604;
G(20180120018) = 25903012;Sp( 20180120018 *)≈  25895220.2 , jdz =sp(m)/s(m) ≈ 0.999699;
G(20180120020) = 36521832;Sp( 20180120020 *)≈  36501887.4 , jdz =sp(m)/s(m) ≈ 0.999454;
G(20180120022) = 51735344;Sp( 20180120022 *)≈  51714875.6 , jdz =sp(m)/s(m) ≈ 0.999604;
G(20180120024) = 25867362;Sp( 20180120024 *)≈  25855503.6 , jdz =sp(m)/s(m) ≈ 0.999542;
G(20180120026) = 28799519;Sp( 20180120026 *)≈  28780100.1 , jdz =sp(m)/s(m) ≈ 0.999326;
G(20180120028) = 55173447;Sp( 20180120028 *)≈  55158407.7 , jdz =sp(m)/s(m) ≈ 0.999727;
G(20180120030) = 41666386;Sp( 20180120030 *)≈  41645279.0 , jdz =sp(m)/s(m) ≈ 0.999493;
G(20180120032) = 27418377;Sp( 20180120032 *)≈  27408961.8 , jdz =sp(m)/s(m) ≈ 0.999657;
G(20180120034) = 53519224;Sp( 20180120034 *)≈  53494145.4 , jdz =sp(m)/s(m) ≈ 0.999531;
G(20180120036) = 25861479;Sp( 20180120036 *)≈  25855503.6 , jdz =sp(m)/s(m) ≈ 0.999769;
G(20180120038) = 28225978;Sp( 20180120038 *)≈  28210919.4 , jdz =sp(m)/s(m) ≈ 0.999466;
G(20180120040) = 70143549;Sp( 20180120040 *)≈  70116620.0 , jdz =sp(m)/s(m) ≈ 0.999616;
G(20180120042) = 25866779;Sp( 20180120042 *)≈  25855503.6 , jdz =sp(m)/s(m) ≈ 0.999564;
G(20180120044) = 31336206;Sp( 20180120044 *)≈  31316572.6 , jdz =sp(m)/s(m) ≈ 0.999373;
G(20180120046) = 52750779;Sp( 20180120046 *)≈  52724948.6 , jdz =sp(m)/s(m) ≈ 0.999510;
G(20180120048) = 28752222;Sp( 20180120048 *)≈  28747179.3 , jdz =sp(m)/s(m) ≈ 0.999825;

显然,上面的25个连续偶数的表为两个素数和的表法数值的计算值的精度值都在0.999以上。

接下去的5个偶数的表法数值的计算值的精度我没有计算,但是会出现例外吗?不相信能够高精度计算表法数的网友可以尝试验证一下:(表法数真值自行解决)
Sp( 20180120050 *)≈  36368180.9 , jdz =sp(m)/s(m) ≈
Sp( 20180120052 *)≈  54194891.7 , jdz =sp(m)/s(m) ≈
Sp( 20180120054 *)≈  25864604.5 , jdz =sp(m)/s(m) ≈
Sp( 20180120056 *)≈  25999947.8 , jdz =sp(m)/s(m) ≈
Sp( 20180120058 *)≈  67254017.0 , jdz =sp(m)/s(m) ≈
start time =13:03:37,end time=13:14:34 ,

 楼主| 发表于 2018-1-21 22:07 | 显示全部楼层

谢谢!
我是认为作为一个偶数表为两个素数和的数量的数学计算式,要做到尽可能的接近真值才好。
真值代表着事实真相,我们既然不可能与真相完全一致,也应该尽可能的接近真值。这在数学上面有个术语 ——逼近真相。
从我的这个帖子中,可以看到,对于一亿以上的偶数表为两个素数和的数量的计算,一般的计算值的精度都在0.99以上;对于百亿以上的偶数表为两个素数和的数量的计算,一般的计算值的精度都在0.999以上。
当然在一亿以下的偶数的偶数表为两个素数和的数量的计算中,则没有这么高的计算精度,因为比较小的偶数采用概率连乘式时计算值的相对误差的分布相对比较离散,一个计算式不可能对任意一个偶数的表法数的计算值都取得比较高的计算精度。

当然有的人不认为计算精度是数学计算式好不好的重要衡量指标,因此他可以把一个原来计算值的计算精度在0.80以上属于比较好的连乘式的公式,通过莫名其妙的“加强” ,“加强”到计算精度连0.10也达不到了,(这是在一个偶数的实例验证就出现的事实,如果更大偶数,会不会出现计算值的计算精度连0.05也达不到呢?会不会出现计算值的计算精度连0.01也达不到的情况呢?天知道!)
老实说,对于偶数素对数量的计算值的计算精度达不到0.50的任何偶数素对的计算式,我是没有丝毫兴趣去观看的。更不要说计算精度连0.10也达不到的偶数素对的计算式。

我以前曾经说过,大偶数的全部素对是不可能验证给你们看的,为什么呢?
比如:偶数 M= 9699690 S(m)= 124180 ,12.4万对素对的文本有多大呢?
All keys of dividing  9699690  into two prime numbers:
4849723 + 4849967  4849639 + 4850051  4849631 + 4850059 …… 这个文本的大小有2273kb,在电脑的屏幕上大概有500屏幕上下;

再看看我这里计算的千亿偶数的素对数量,素对数量在千万以上,而且偶数大,分成的两个素数的位数也多,因此满屏幕的显示至少需要十万屏幕以上。能够帖出来吗?谁会有兴趣去看?

因此,只要在小偶数时确定程序给出的全部素对数量是正确的,对于大偶数,我们只观看程序给出的素对数据:
M= 9699690 S(m)= 124180  S1(m)= 124031  Sp(m)= 136157.51  Δ(m)= .1   K(m)= 4.38  ,等等,
而不看具体的素对,最多给出几个素对例子。


 楼主| 发表于 2018-1-25 20:52 | 显示全部楼层
今天的日期是2018年01月25日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180125×1000起的连续偶数M表为两个素数和的表法数值Sp(m)以及计算值的精度 jdz。
注:素对真值s(m)=G(M).两个不同程序的各自表示形式。

G(20180125000) = 41387273;Sp( 20180125000 *)≈  41370609.8 , jdz =sp(m)/s(m) ≈0.999597;
G(20180125002) = 51734336;Sp( 20180125002 *)≈  51714552.8 , jdz =sp(m)/s(m) ≈0.999618;
G(20180125004) = 28213467;Sp( 20180125004 *)≈  28206010.9 , jdz =sp(m)/s(m) ≈0.999736;
G(20180125006) = 25874986;Sp( 20180125006 *)≈  25855510.0 , jdz =sp(m)/s(m) ≈0.999247;
G(20180125008) = 53212163;Sp( 20180125008 *)≈  53188477.7 , jdz =sp(m)/s(m) ≈0.999555;
G(20180125010) = 34488610;Sp( 20180125010 *)≈  34474013.3 , jdz =sp(m)/s(m) ≈0.999577;
G(20180125012) = 26043997;Sp( 20180125012 *)≈  26029036.9 , jdz =sp(m)/s(m) ≈0.999426;
G(20180125014) = 63464123;Sp( 20180125014 *)≈  63432184.5 , jdz =sp(m)/s(m) ≈0.999497;
G(20180125016) = 25869177;Sp( 20180125016 *)≈  25855510.0 , jdz =sp(m)/s(m) ≈0.999472;
G(20180125018) = 26137004;Sp( 20180125018 *)≈  26122143.6 , jdz =sp(m)/s(m) ≈0.999431;
G(20180125020) = 83264234;Sp( 20180125020 *)≈  83231258.0 , jdz =sp(m)/s(m) ≈0.999604;
G(20180125022) = 26141818;Sp( 20180125022 *)≈  26136363.0 , jdz =sp(m)/s(m) ≈0.999791;
G(20180125024) = 26182685; Sp( 20180125024 *)≈  26174906.5 , jdz =sp(m)/s(m) ≈0.999703;
G(20180125026) = 55388635; Sp( 20180125026 *)≈  55369615.2 , jdz =sp(m)/s(m) ≈0.999657;
G(20180125028) = 31648432; Sp( 20180125028 *)≈  31634976.9 , jdz =sp(m)/s(m) ≈0.999575;
G(20180125030) = 37628253; Sp( 20180125030 *)≈  37608014.6 , jdz =sp(m)/s(m) ≈0.999462;
G(20180125032) = 53042918; Sp( 20180125032 *)≈  53026876.4 , jdz =sp(m)/s(m) ≈0.999698;
G(20180125034) = 25873522; Sp( 20180125034 *)≈  25859639.6 , jdz =sp(m)/s(m) ≈0.999463;
G(20180125036) = 27599978; Sp( 20180125036 *)≈  27588642.7 , jdz =sp(m)/s(m) ≈0.999589;
G(20180125038) = 51785236; Sp( 20180125038 *)≈  51760886.0 , jdz =sp(m)/s(m) ≈0.999530;
G(20180125040) = 34490848; Sp( 20180125040 *)≈  34478550.9 , jdz =sp(m)/s(m) ≈0.999643;
G(20180125042) = 35475312; Sp( 20180125042 *)≈  35462757.1 , jdz =sp(m)/s(m) ≈0.999646;
G(20180125044) = 51729098; Sp( 20180125044 *)≈  51711020.0 , jdz =sp(m)/s(m) ≈0.999651;
G(20180125046) = 25867808; Sp( 20180125046 *)≈  25855510.0 , jdz =sp(m)/s(m) ≈0.999525;
G(20180125048) = 25868050; Sp( 20180125048 *)≈  25855510.0 , jdz =sp(m)/s(m) ≈0.999515;

以上计算了25个偶数的表法数,全部偶数的表法数计算值的精度都在0.999以上,余下5个偶数不再计算精度值,相信计算值精度不会低于0.999;
G(20180125050) = 68979731; Sp( 20180125050 *)≈  68948026.7 , jdz =sp(m)/s(m) ≈
G(20180125052) = 26525287; Sp( 20180125052 *)≈  26518471.8 , jdz =sp(m)/s(m) ≈
G(20180125054) = 25867347; Sp( 20180125054 *)≈  25855510.0 , jdz =sp(m)/s(m) ≈
G(20180125056) = 70100894; Sp( 20180125056 *)≈  70077653.8 , jdz =sp(m)/s(m) ≈
G(20180125058) = 26099275; Sp( 20180125058 *)≈  26097150.3 , jdz =sp(m)/s(m) ≈
 楼主| 发表于 2018-1-30 14:40 | 显示全部楼层
本帖最后由 愚工688 于 2018-2-5 06:19 编辑

今天的日期是2018年01月30日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180130×1000起的连续偶数M表为两个素数和的表法数下界值inf(m)以及计算值的 相对误差,以及偶数M表为两个素数和的表法数区域下界值infS(m)。
注1:区域下界值infS(m)=表法数下界值inf(m)/k(m), infS(m)是随偶数增大而线性增大。k(m),素因子系数。
注2:素对真值s(m)=G(M).两个不同程序的各自表示形式。

G(20180130000) = 69298652;
inf( 20180130000 )≈  69228504.0 , Δ≈-0.00101,infS( 20180130000 )= 25839832.85 , k(m)= 2.67914
G(20180130002) = 25865435;
inf( 20180130002 )≈  25839832.9 , Δ≈-0.00099,infS( 20180130002 )= 25839832.85 , k(m)= 1
G(20180130004) = 25869903;
inf( 20180130004 )≈  25839832.9 , Δ≈-0.00116,infS( 20180130004 )= 25839832.85 , k(m)= 1
G(20180130006) = 51737255;
inf( 20180130006 )≈  51681807.8 , Δ≈-0.00107,infS( 20180130006 )= 25839832.85 , k(m)= 2.00008
G(20180130008) = 26820611;
inf( 20180130008 )≈  26796863.7 , Δ≈-0.00089,infS( 20180130008 )= 25839832.86 , k(m)= 1.03704
G(20180130010) = 35176395;
inf( 20180130010 )≈  35140806.9 , Δ≈-0.00101,infS( 20180130010 )= 25839832.86 , k(m)= 1.35995
G(20180130012) = 62166708;
inf( 20180130012 )≈  62102473.8 , Δ≈-0.00103,infS( 20180130012 )= 25839832.86 , k(m)= 2.40336
G(20180130014) = 30671403;
inf( 20180130014 )≈  30636375.2 , Δ≈-0.00114,infS( 20180130014 )= 25839832.86 , k(m)= 1.18563
G(20180130016) = 26765133;
inf( 20180130016 )≈  26730861.6 , Δ≈-0.00128,infS( 20180130016 )= 25839832.87 , k(m)= 1.03448
G(20180130018) = 52641838;
inf( 20180130018 )≈  52586326.6 , Δ≈-0.00105,infS( 20180130018 )= 25839832.87 , k(m)= 2.03509
G(20180130020) = 34709159;
inf( 20180130020 )≈  34675388.6 , Δ≈-0.00097,infS( 20180130020 )= 25839832.87 , k(m)= 1.34194
G(20180130022) = 28552579;
inf( 20180130022 )≈  28520924.6 , Δ≈-0.00111,infS( 20180130022 )= 25839832.87 , k(m)= 1.10376
G(20180130024) = 55223733;
inf( 20180130024 )≈  55172819.9 , Δ≈-0.00092,infS( 20180130024 )= 25839832.88 , k(m)= 2.13518
G(20180130026) = 31397496;
inf( 20180130026 )≈  31364211.0 , Δ≈-0.00106,infS( 20180130026 )= 25839832.88 , k(m)= 1.21379
G(20180130028) = 25869674;
inf( 20180130028 )≈  25839832.9 , Δ≈-0.00115,infS( 20180130028 )= 25839832.88 , k(m)= 1
G(20180130030) = 68974504;
inf( 20180130030 )≈  68906221.0 , Δ≈-0.00099,infS( 20180130030 )= 25839832.89 , k(m)= 2.66667
G(20180130032) = 25901741;
inf( 20180130032 )≈  25876799.7 , Δ≈-0.00096,infS( 20180130032 )= 25839832.89 , k(m)= 1.00143
G(20180130034) = 27267253;
inf( 20180130034 )≈  27234363.6 , Δ≈-0.00121,infS( 20180130034 )= 25839832.89 , k(m)= 1.05397
G(20180130036) = 58315737;
inf( 20180130036 )≈  58255170.3 , Δ≈-0.00104,infS( 20180130036 )= 25839832.89 , k(m)= 2.25447
G(20180130038) = 25893067;
inf( 20180130038 )≈  25867707.6 , Δ≈-0.00098,infS( 20180130038 )= 25839832.9 , k(m)= 1.00108
G(20180130040) = 42728476;
inf( 20180130040 )≈  42682518.7 , Δ≈-0.00108,infS( 20180130040 )= 25839832.9 , k(m)= 1.65181
G(20180130042) = 51748518;
inf( 20180130042 )≈  51700802.7 , Δ≈-0.00092,infS( 20180130042 )= 25839832.9 , k(m)= 2.00082
G(20180130044) = 26304327;
inf( 20180130044 )≈  26277796.2 , Δ≈-0.00101,infS( 20180130044 )= 25839832.9 , k(m)= 1.01695
G(20180130046) = 25872276;
inf( 20180130046 )≈  25848346.9 , Δ≈-0.00092,infS( 20180130046 )= 25839832.91 , k(m)= 1.00033
G(20180130048) = 56439861;
inf( 20180130048 )≈  56378570.4 , Δ≈-0.00109,infS( 20180130048 )= 25839832.91 , k(m)= 2.18185
 楼主| 发表于 2018-2-5 14:18 | 显示全部楼层
本帖最后由 愚工688 于 2018-2-5 06:21 编辑

今天的日期是2018年2月5日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180205×1000起的连续偶数M表为两个素数和的表法数下界值inf(m)以及计算值的 相对误差,以及偶数M表为两个素数和的表法数区域下界值infS(m)。
注1:区域下界值infS(m)=表法数下界值inf(m)/k(m), infS(m)是随偶数增大而线性增大。k(m)——偶数含有的素因子形成的素因子系数。
注2:素对真值s(m)=G(M).两个不同程序的各自表示素对数量的形式。


G(20180205000) = 69871489; k(m)= 2.70109 ,
inf( 20180205000 )≈  69825220.3 , Δ≈-0.000662,infS( 20180205000 )= 25850765.45 ,

G(20180205002) = 28458705; k(m)= 1.10026 ,
inf( 20180205002 )≈  28442686.3 , Δ≈-0.000563,infS( 20180205002 )= 25850765.45 ,

G(20180205004) = 26074953; k(m)= 1.008 ,
inf( 20180205004 )≈  26057571.6 , Δ≈-0.000667,infS( 20180205004 )= 25850765.45 ,

G(20180205006) = 56439236; k(m)= 2.18182,
inf( 20180205006 )≈  56401670.1 , Δ≈-0.000666,infS( 20180205006 )= 25850765.45 ,

G(20180205008) = 26456329; k(m)= 1.02286 ,
inf( 20180205008 )≈  26441791.9 , Δ≈-0.000549,infS( 20180205008 )= 25850765.46 ,

G(20180205010) = 41806042; k(m)= 1.61616,
inf( 20180205010 )≈  41779014.9 , Δ≈-0.000646,infS( 20180205010 )= 25850765.46 ,

G(20180205012) = 57496071;k(m)= 2.22268 ,
inf( 20180205012 )≈  57458001.4 , Δ≈-0.000662,infS( 20180205012 )= 25850765.46 ,

G(20180205014) = 27211679; k(m)= 1.05223 ,
inf( 20180205014 )≈  27201057.2 , Δ≈-0.000390,infS( 20180205014 )= 25850765.46 ,

G(20180205016) = 25873528;k(m)= 1.00042
inf( 20180205016 )≈  25861496.4 , Δ≈-0.000465,infS( 20180205016 )= 25850765.47 ,

G(20180205018) = 51887088;  k(m)= 2.00597
inf( 20180205018 )≈  51855863.9 , Δ≈-0.000602,infS( 20180205018 )= 25850765.47 ,

G(20180205020) = 34482911; k(m)= 1.33333 ,
inf( 20180205020 )≈  34467687.3 , Δ≈-0.000441,infS( 20180205020 )= 25850765.47 ,

G(20180205022) = 25872548;k(m)= 1.00033,
inf( 20180205022 )≈  25859391.0 , Δ≈-0.000509,infS( 20180205022 )= 25850765.47 ,

G(20180205024) = 62082983;k(m)= 2.4 ,
inf( 20180205024 )≈  62041837.2 , Δ≈-0.000663,infS( 20180205024 )= 25850765.48 ,

G(20180205026) = 27549787;k(m)= 1.06496,
inf( 20180205026 )≈  27530061.7 , Δ≈-0.000716,infS( 20180205026 )= 25850765.48 ,

G(20180205028) = 27651650; k(m)= 1.06898,
inf( 20180205028 )≈  27633963.6 , Δ≈-0.000640,infS( 20180205028 )= 25850765.48 ,

G(20180205030) = 70102705; k(m)= 2.70997,
inf( 20180205030 )≈  70054670.9 , Δ≈-0.000685,infS( 20180205030 )= 25850765.48 ,

就计算16个偶数的下界计算值的相对误差值,余下5个偶数的下界计算值的相对误差就不计算了,绝对不会大的。

inf( 20180205032 )≈  28365752.2 , Δ≈,infS( 20180205032 )= 25850765.49 , k(m)= 1.09729
inf( 20180205034 )≈  28745835.0 , Δ≈,infS( 20180205034 )= 25850765.49 , k(m)= 1.11199
inf( 20180205036 )≈  53484342.4 , Δ≈,infS( 20180205036 )= 25850765.49 , k(m)= 2.06897
inf( 20180205038 )≈  31023032.6 , Δ≈,infS( 20180205038 )= 25850765.49 , k(m)= 1.20008
inf( 20180205040 )≈  34967219.0 , Δ≈,infS( 20180205040 )= 25850765.5 , k(m)= 1.35266
表法数真值:
G(20180205032) = 28377930
G(20180205034) = 28758803
G(20180205036) = 53510290
G(20180205038) = 31037409
G(20180205040) = 34996536
 楼主| 发表于 2018-2-10 19:24 | 显示全部楼层
今天的日期是2018年2月10日;
继续以今天的日期作为随机数,计算百亿级别的偶数20180210×1000起的连续偶数M表为两个素数和的表法数计算值精度 jdz 。
G(20180210000) = 34482209;Sp( 20180210000 *)≈  34473673.1 , jdz =sp(m)/s(m) ≈0.99975;
G(20180210002) = 25913942;Sp( 20180210002 *)≈  25906251.4 , jdz =sp(m)/s(m) ≈0.99970;
G(20180210004) = 56188319;Sp( 20180210004 *)≈  56159409.6 , jdz =sp(m)/s(m) ≈0.99949;
G(20180210006) = 28738147;Sp( 20180210006 *)≈  28728061.0 , jdz =sp(m)/s(m) ≈0.99965;
G(20180210008) = 31041710;Sp( 20180210008 *)≈  31026305.8 , jdz =sp(m)/s(m) ≈0.99950;
G(20180210010) = 69977385;Sp( 20180210010 *)≈  69946583.2 , jdz =sp(m)/s(m) ≈0.99956;
G(20180210012) = 25869852;Sp( 20180210012 *)≈  25857625.4 , jdz =sp(m)/s(m) ≈0.99953;
G(20180210014) = 25972971;Sp( 20180210014 *)≈  25957926.9 , jdz =sp(m)/s(m) ≈0.99942;
G(20180210016) = 51730048;Sp( 20180210016 *)≈  51710509.7 , jdz =sp(m)/s(m) ≈0.99962;
G(20180210018) = 25861279;Sp( 20180210018 *)≈  25855254.9 , jdz =sp(m)/s(m) ≈0.99977;

表法数计算式:
Sp( 20180210000 *) = 1/(1+ .1533 )*( 20180210000 /2 -2)*p(m) ≈ 34473673.1 ,
Sp( 20180210002 *) = 1/(1+ .1533 )*( 20180210002 /2 -2)*p(m) ≈ 25906251.4 ,
Sp( 20180210004 *) = 1/(1+ .1533 )*( 20180210004 /2 -2)*p(m) ≈ 56159409.6 ,
Sp( 20180210006 *) = 1/(1+ .1533 )*( 20180210006 /2 -2)*p(m) ≈ 28728061.0 ,
Sp( 20180210008 *) = 1/(1+ .1533 )*( 20180210008 /2 -2)*p(m) ≈ 31026305.8 ,  
Sp( 20180210010 *) = 1/(1+ .1533 )*( 20180210010 /2 -2)*p(m) ≈ 69946583.2 ,
Sp( 20180210012 *) = 1/(1+ .1533 )*( 20180210012 /2 -2)*p(m) ≈ 25857625.4 ,
Sp( 20180210014 *) = 1/(1+ .1533 )*( 20180210014 /2 -2)*p(m) ≈ 25957926.9 ,
Sp( 20180210016 *) = 1/(1+ .1533 )*( 20180210016 /2 -2)*p(m) ≈ 51710509.7 ,
Sp( 20180210018 *) = 1/(1+ .1533 )*( 20180210018 /2 -2)*p(m) ≈ 25855254.9 ,
式中:
p(m)= π[(n-2)/n]*π[(p-1)/(p-2)]   ;  3≤ n≤r;n是素数; p是偶数M含有的奇素数因子,p≤√(M-2)。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-25 22:51 , Processed in 0.109314 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表