|
正整数集合1,2,3,……与其平方得到的它的真子集1,4,9,……元素个数相等的做法是错误的,事实上,从集合元素个数来讲,后者是你牵着的真子集,后者是依据从多到少的 对应法则 ∣√n∣得到的集合1,4,9,……。 这两个集合的元素个数分别为: lim n→∞ n=∞, lim n→∞∣√n∣=∞ 。使用《微积分学教程》一卷第一分册中,整序变量中的不定式定值法,可以得到两者的比为 lim n→∞n/∣√n∣=∞ 。 这说明正整数集合1,2,3,……比其真子集1,4,9,……的元素个数多得多;由于对无穷集合一一对应法则进行不到底,不能使用“一一对应法则,得到无穷集合元素个数可以相等”的的集合论,根据上述讨论,应当提出无穷自然数集合如下定义。
定义3:元素个数为有限理想自然数的正常集合叫做有穷自然数集合;若以有穷自然数集合为项的无穷序列的元素个数序列的趋向为包含所有自然数的元素个数为非正常实数+∞的想象性自然数集合,则称:这样的元素个数为非正常实数+∞的含有所有自然数的,不可构造完毕的想象性质的理想性无穷性质的自然数集合;且称N={0,1,2,3,……}为非正常集合。 |
|