|
本帖最后由 愚工688 于 2022-5-25 06:10 编辑
对偶数9699690前后区域偶数的素对数量的计算:
1,类哈李公式的对数计算式:
Xi(M)=t2*c1*M/(logM)^2 ;修正系数 t2=1.358-(log(M))^(.5)*0.05484 ;
G(9699680) = 37868 ;Xi(M)≈ 37549 infS(m)= 28161.75 δxi(M)≈?-0.00842;
G(9699682) = 28846 ;Xi(M)≈ 28848.62 infS(m)= 28161.748 δxi(M)≈? 0.00009;
G(9699684) = 56814 ;Xi(M)≈ 56323.51 infS(m)= 28161.755 δxi(M)≈?-0.00863;
G(9699686) = 28225 ;Xi(M)≈ 28161.76 infS(m)= 28161.76 δxi(M)≈?-0.00224;
G(9699688) = 29508 ;Xi(M)≈ 29204.8 infS(m)= 28161.771 δxi(M)≈?-0.01027;
G(9699690) = 124180 ;Xi(M)≈ 123369.65 infS(m)= 28161.773 δxi(M)≈?-0.00653;
G(9699692) = 28588 ;Xi(M)≈ 28424.97 infS(m)= 28161.776 δxi(M)≈?-0.00570;
G(9699694) = 28853 ;Xi(M)≈ 28699.82 infS(m)= 28161.786 δxi(M)≈?-0.00531;
G(9699696) = 56629 ;Xi(M)≈ 56323.58 infS(m)= 28161.79 δxi(M)≈?-0.00539;
G(9699698) = 31437 ;Xi(M)≈ 31351.05 infS(m)= 28161.796 δxi(M)≈?-0.00274;
time start =22:27:12, time end =22:27:13
2,采用有修正系数的连乘式计算:(*p(m) 的展开即为素数连乘式)
计算式:
Sp( 9699670 *) = 1/(1+ .0978 )*( 9699670 /2 -2)*p(m) ≈ 37929.8 , k(m)= 1.33971
Sp( 9699672 *) = 1/(1+ .0978 )*( 9699672 /2 -2)*p(m) ≈ 57882.1 , k(m)= 2.04444
Sp( 9699674 *) = 1/(1+ .0978 )*( 9699674 /2 -2)*p(m) ≈ 28337.8 , k(m)= 1.00091
Sp( 9699676 *) = 1/(1+ .0978 )*( 9699676 /2 -2)*p(m) ≈ 33974.3 , k(m)= 1.2
Sp( 9699678 *) = 1/(1+ .0978 )*( 9699678 /2 -2)*p(m) ≈ 56623.9 , k(m)= 2
Sp( 9699680 *) = 1/(1+ .0978 )*( 9699680 /2 -2)*p(m) ≈ 37749.3 , k(m)= 1.33333
Sp( 9699682 *) = 1/(1+ .0978 )*( 9699682 /2 -2)*p(m) ≈ 29002.5 , k(m)= 1.02439
Sp( 9699684 *) = 1/(1+ .0978 )*( 9699684 /2 -2)*p(m) ≈ 56623.9 , k(m)= 2
Sp( 9699686 *) = 1/(1+ .0978 )*( 9699686 /2 -2)*p(m) ≈ 28312 , k(m)= 1
Sp( 9699688 *) = 1/(1+ .0978 )*( 9699688 /2 -2)*p(m) ≈ 29360.6 , k(m)= 1.03704
Sp( 9699690 *) = 1/(1+ .0978 )*( 9699690 /2 -2)*p(m) ≈ 124027.6 , k(m)= 4.38075
Sp( 9699692 *) = 1/(1+ .0978 )*( 9699692 /2 -2)*p(m) ≈ 28576.6 , k(m)= 1.00935
Sp( 9699694 *) = 1/(1+ .0978 )*( 9699694 /2 -2)*p(m) ≈ 28852.9 , k(m)= 1.01911
Sp( 9699696 *) = 1/(1+ .0978 )*( 9699696 /2 -2)*p(m) ≈ 56624 , k(m)= 2
Sp( 9699698 *) = 1/(1+ .0978 )*( 9699698 /2 -2)*p(m) ≈ 31518.3 , k(m)= 1.11325
Sp( 9699700 *) = 1/(1+ .0978 )*( 9699700 /2 -2)*p(m) ≈ 37749.3 , k(m)= 1.33333
Sp( 9699702 *) = 1/(1+ .0978 )*( 9699702 /2 -2)*p(m) ≈ 56624 , k(m)= 2
连乘式计算值的相对误差:
G(9699670) = 38083;Sp( 9699670 *)≈ 37929.8 , Δ≈-0.00402, k(m)= 1.33971
G(9699672) = 57905;Sp( 9699672 *)≈ 57882.1 , Δ≈-0.00040, k(m)= 2.04444
G(9699674) = 28316;Sp( 9699674 *)≈ 28337.8 , Δ≈-0.00077, k(m)= 1.00091
G(9699676) = 33946;Sp( 9699676 *)≈ 33974.3 , Δ≈ 0.00082, k(m)= 1.2
G(9699678) = 56791;Sp( 9699678 *)≈ 56623.9 , Δ≈-0.00294, k(m)= 2
G(9699680) = 37868;Sp( 9699680 *)≈ 37749.3 , Δ≈-0.00314, k(m)= 1.33333
G(9699682) = 28846;Sp( 9699682 *)≈ 29002.5 , Δ≈ 0.00543, k(m)= 1.02439
G(9699684) = 56814;Sp( 9699684 *)≈ 56623.9 , Δ≈-0.00334, k(m)= 2
G(9699686) = 28225;Sp( 9699686 *)≈ 28312 , Δ≈ 0.00308, k(m)= 1
G(9699688) = 29508;Sp( 9699688 *)≈ 29360.6 , Δ≈-0.00500, k(m)= 1.03704
G(9699690) = 124180;Sp( 9699690 *)≈124027.6 , Δ≈-0.00123, k(m)= 4.38075
G(9699692) = 28588;Sp( 9699692 *)≈ 28576.6 , Δ≈, k(m)= 1.00935
G(9699694) = 28853;Sp( 9699694 *)≈ 28852.9 , Δ≈, k(m)= 1.01911
G(9699696) = 56629;Sp( 9699696 *)≈ 56624 , Δ≈, k(m)= 2
G(9699698) = 31437;Sp( 9699698 *)≈ 31518.3 , Δ≈, k(m)= 1.11325
G(9699700) = 37677;Sp( 9699700 *)≈ 37749.3 , Δ≈, k(m)= 1.33333
G(9699702) = 56566;Sp( 9699702 *)≈ 56624 , Δ≈, k(m)= 2
G(9699704) = 33976;Sp( 9699704 *)≈ 33974.4 , Δ≈, k(m)= 1.2
G(9699706) = 28220;Sp( 9699706 *)≈ 28349.3 , Δ≈, k(m)= 1.00132
G(9699708) = 56493;Sp( 9699708 *)≈ 56624 , Δ≈, k(m)= 2
G(9699710) = 37789;Sp( 9699710 *)≈ 37917.1 , Δ≈, k(m)= 1.33926
start time :21:22:33, end time:21:22:36use time :
两种计算方法的计算值的相对误差都比较小,说明与真值是比较贴近的。
而楼主采用的32个K值改进计算误差的方法的计算值的相对误差举例:
9699680:Δ= 0.01938;
9699690:Δ=-0.09157;
9699700:Δ= 0.02455;
显然在相对误差值的波动方面,不如拉曼扭杨系数反映的更准确。(极大值与极小值之间的差距)
|
|