|

楼主 |
发表于 2023-1-29 17:57
|
显示全部楼层
本帖最后由 春风晚霞 于 2023-2-1 07:32 编辑
解下列各题
1、 设\(\small f(x)=x^5-18x^4 +118x^3 -348x^2+457x -210\),求方程\(\small f(x)=0\)解集.
解:根据艾森施坦(Eisensrein)判别法:
因为210=1\(\small\times\)2\(\small\times\)3\(\small\times\)5\(\small\times\)7. 且\(\small f(1)\)=\(\small f(2)\)=\(\small f(3)\)=\(\small f(5)\)=\(\small f(7)=0\).
所以\(\small f(x)=\)\(\small\ x^5-18x^4 +118x^3 -348x^2+457x -210\)
\(\qquad\)\(\quad\)\(\quad\)\(\>\)\(=\small (x-1)(x-2)(x-3)(x-5)(x-7)\).
所以方程\(\small f(x)=0\)解集为\(\mathscr{A}\)\(=\left\{1,2,3,5,7\right\}\).
2、设整系数多项式函数\(\small f(z)=\small (z^{12} - 4z^{10} - 16z^8 + 56z^6 + 32z^4 + 128z^2 - 512 \),求\(\small f(z)\)在复数域上的因式分解,并求\(\small f(z)=0\)的解集.
解法1:\(\small (z^{12} - 4z^{10} - 16z^8 + 56z^6 + 32z^4 + 128z^2 - 512 \)
\(=\small (z^{12} - 4z^{10}) - (16z^8 - 64z^6) - (8z^6-32z^4) + (128z^2 - 512) \)
\(=\small (z^2 - 4)(z^{10}-16z^6-8z^4+128)\)
\(=\small (z^2 - 4)(z^4-16)(z^6-8)\).
\(=\small\displaystyle\prod_{k=0}^1 [z-\sqrt[2]{4}(cos{\frac{2kπ+0}2}+isin\frac{2kπ+0}{2})]\)\(\small\displaystyle\prod_{j=0}^3 [z-\sqrt[4]{16}(cos\frac{2jπ+0}{4}+isin\frac{2kπ+0}{4})]\)\(×\small\displaystyle\prod_{m=0}^5 [z-\sqrt[6]{8}(cos\frac{2mπ+0}{6}+isin\frac{2mπ+0}{6})]\).
若令\(\mathscr{A}_1=\)\(\left\{\sqrt[2]{4}(cos\frac{2kπ+0}{2}+isin\frac{2kπ+0}{2})|k=0,1\right\}\);
\(\mathscr{A}_2=\)\(\left\{\sqrt[4]{16}(cos\frac{2jπ+0}{4}+isin\frac{2jπ+0}{4})|j=0,1,2,3\right\}\);
\(\mathscr{A}_3=\)\(\left\{\sqrt[6]{8}(cos\frac{2mπ+0}{6}+isin\frac{2mπ+0}{8})|m=0,1,2,3,4,5\right\}\);则方程\(\small f(z)=0\)的解集\(\mathscr{A}=\)\(\mathscr{A}_1\)\(\cup\)\(\mathscr{A}_2\)\(\cup\)\(\mathscr{A}_3\).
解法2:\(\small (z^{12} - 4z^{10} - 16z^8 + 56z^6 + 32z^4 + 128z^2 - 512 \)
\(=\small (z^{12} - 4z^{10}) - (16z^8 - 64z^6) - (8z^6-32z^4) + (128z^2 - 512) \)
\(=\small (z^2 - 4)(z^{10}-16z^6-8z^4+128)\)
\(=\small(z^2 - 4)(z^4-16)(z^6-8)\).
\(=\small(z^2 - 4)^2(z^2+4)(z^2-2)(z^4+2z^2+4)\).
\(=\small (z-2)(z+2)(z-\sqrt 2)(z+\sqrt 2)(z-2i)(z+2i)\)\([z-\frac{\sqrt 2}{2}(1-{\sqrt 3}i)][z+\frac{\sqrt 2}{2}(1-{\sqrt 3}i)]\)\([z-\frac{\sqrt 2}{2}(1+{\sqrt 3}i)][z+\frac{\sqrt 2}{2}(1+{\sqrt 3}i)]\).
所以,方程\(\small f(x)=0\)的解集为
\(\mathscr{A}=\)\(\left\{±2,±\small\sqrt 2,±2i,±\frac{\sqrt 2}{2}(1-{\sqrt 3}i),±\frac{\sqrt 2}{2}(1+{\sqrt 3}i)\right\}\).
3、求有理a、b,使下述多项式有重因式,并求出重因式及其重数:\(\small x^4\)+\(\small ax^3\)+\(\small (a-b)x^2\)+\(\small bx+1\).
解:根据重因式判定定理和艾森施坦(Eisensrein)判别法:
因为\(\small f(x)\)=\(\small x^4\)+\(\small ax^3\)+\(\small (a-b)x^2\)+\(\small bx+1\);所以\(\small f′(x)\)=\(\small 4x^3\)+\(\small 3ax^2\)+\(\small 2(a-b)x\)+\(\small b\);
又因为1=1×1=(-1)×(-1);所以x=1必为方程组\(\begin{cases}
x^4+ax^3+ (a-b)x^2+ bx+1=0&(1)\\ 4x^3+3ax^2+2(a-b)x+b=0&(2)
\end{cases}\)的解,把x=1代入方程组整理得\(\begin{cases}
a+1=0&(1)\\5a-b+4=0&(2)
\end{cases}\)解之得\(\begin{cases}
a=-1\\b=-1\end{cases}\);所以,当a=b=-1时,多项式\(\small x^4\)+\(\small ax^3\)+\(\small (a-b)x^2\)+\(\small bx+1=\)\(\small x^4-\)\(\small x^3-\)\(\small x+1=\)\(\small (x-1)^2(x^2+x+1)\)有二重因式\((x-1)^2\);同理:当a=b=1时,多项式\(\small x^4\)+\(\small ax^3\)+\(\small (a-b)x^2\)+\(\small bx+1=\)\(\small x^4+\small x^3+\small x+1=\)\((x+1)^2(x^2-x+1)\)有二重因式\((x+1)^2\). |
|