数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 重生888@

不用验证,证明10000以内偶数哥猜成立

[复制链接]
发表于 2023-11-19 16:55 | 显示全部楼层
重生888@ 发表于 2023-11-19 08:11
用0+0理论证明哥猜,要一步步来!不了解第一步,很难进行第二步。

第一步,假定奇数列1和奇数列2中的素数相连,合数也相连,对于1000或1800以内的偶数都有素数+素数的素数对存在!

第二步,定义虚单位,假定两奇数列中的素数和合数都相距1,或2,或3,或……,与现实不符!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-11-19 18:28 | 显示全部楼层
yangchuanju 发表于 2023-11-19 08:55
第一步,假定奇数列1和奇数列2中的素数相连,合数也相连,对于1000或1800以内的偶数都有素数+素数的素数 ...

您非要按照你的思路胡乱猜测,有何办法?对第一步1000您理解了吗?理解了,再说第二步!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-12-2 10:01 | 显示全部楼层
yangchuanju 发表于 2023-11-19 08:55
第一步,假定奇数列1和奇数列2中的素数相连,合数也相连,对于1000或1800以内的偶数都有素数+素数的素数 ...

您非要按照你的思路胡乱猜测,有何办法?对第一步1000您理解了吗?理解了,再说第二步

点评

杨先生掉入吴先生的误差的泥潭  发表于 2023-12-3 07:38
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-12-3 07:19 | 显示全部楼层
重生888@ 发表于 2023-12-2 02:01
yangchuanju 发表于 2023-11-19 08:55
第一步,假定奇数列1和奇数列2中的素数相连,合数也相连,对于1000 ...

不对我的话作答,顾左右而言他,第二步思维很难达成一致!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-12-3 15:22 | 显示全部楼层
对某件事抱有成见,压根就不相信,虽难改变,但怎该有好奇心吧?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-12-4 07:32 | 显示全部楼层
重生888@ 发表于 2023-12-2 02:01
yangchuanju 发表于 2023-11-19 08:55
第一步,假定奇数列1和奇数列2中的素数相连,合数也相连,对于1000 ...

不对我的话作答,顾左右而言他,第二步思维很难达成一致!
回复 支持 反对

使用道具 举报

发表于 2023-12-4 10:52 | 显示全部楼层
重生888@ 发表于 2023-12-3 23:32
重生888@ 发表于 2023-12-2 02:01
yangchuanju 发表于 2023-11-19 08:55
第一步,假定奇数列1和奇数列2中 ...

如果您的算法正确,自然为您喝彩!
在您的算法错误时,也非要别人都顺着你的杆子爬吗?

数学是一门严格的学问,1就是1,2就是2,没有模糊这种说法。
如果能用概率理论证哥猜,200年前就被先人证出来了,还能轮到你?

8类WDY数可以说它们一样多,但其中的合数和素数绝不会一样多,即便是基数很大也不会一样多。
什么“有序跳动”,纯属遐想!

你的“反证法”,更是与真正的反证法相差万里——根本不沾边!
你的“虚单位”,与素数实际分布规律毫无关系,假定素数都相距1,2,3……虚单位,请给出几个例子?

点评

二百年前,有概率理论了吗?  发表于 2023-12-4 10:57
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-12-4 15:25 | 显示全部楼层
现在不怀疑0+0啦?(书上有图有据)现在“虚单位”又是您不愿接受的!

点评

用你的理论,65000以内的偶数都有哥猜素数对存在,不用验证啦。还煞费心机地排列10000以内的150个素数加180个合数干什么?  发表于 2023-12-4 15:51
你的“虚单位”,与素数实际分布规律毫无关系,假定素数都相距1,2,3……虚单位,请给出几个例子? 点评  发表于 2023-12-4 15:44
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-12-4 18:04 | 显示全部楼层
你的“虚单位”,与素数实际分布规律毫无关系

那是自定义,与证明没关系额,前几步还没达成一致,急着扯那么远,自寻烦恼!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-12-5 06:47 | 显示全部楼层
你的“虚单位”,与素数实际分布规律毫无关系

那是自定义,与证明没关系额,前几步还没达成一致,急着扯那么远,自寻烦恼!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-21 18:57 , Processed in 0.119340 second(s), 20 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表