|
elim于2025-2-1 19:04再发宿帖称【定义有限为\(\mathbb{N}\)的元素的一种性质:(i)有阴数;(ii) 若n是有限数, 则后继\(n’\)也是有限数.令\(S=\{n\in\mathbb{N};n是有限数\}\),由上定义,易见\((0\in S)\bigwedge (n\in S\implies n’\in S)\). 据Peano 公理\(S=\mathbb{N}\).即即自然数皆有限数。
【注记】自然数皆有限数\(\displaystyle\bigcap_{n=1}^{\infty}\)\(\{m\in\mathbb{N}:m>n\}=\phi\).都是极其浅显的东西. 甚至没人把它们作为定理或习题提出来】不难证发现elim的【定义有限为\(\mathbb{N}\)的元素的一种性质:(i)有限数;(ii) 若n是有限数, 则后继\(n’\)也是有限数.令\(S=\{n\in\mathbb{N};n是有限数\}\),由上定义,易见\((0\in S)\bigwedge (n\in S\implies n’\in S)\). 据Peano 公理\(S=\mathbb{N}\).即自然数皆有限数】这段陈述是典型的循环论证。即\(\color{red}{因为\mathbb{N}中的数是有限数}\),\(\color{red}{所以\mathbb{N}中的数是有限数}\).并且也看不出elim【据Peano 公理】的哪哪条哪款得出的【自然数皆有限数】?其次就算【自然数皆有限数】也得不出【\(\displaystyle\bigcap_{n=1}^{\infty}\)\(\{m\in\mathbb{N}:m>n\}=\phi\)】!这是因为elim所给集列\(\{m\in\mathbb{N}:m>n\}\)单调递减,且有\(A_1\supset A_2\)\(\supset\)……\(\supset\)\(A_{\alpha}\supset A_{\beta}\),根据求交运算的吸收律亦有
\(\displaystyle\bigcap_{n=1}^{\ \beta }\)\(\{m\in\mathbb{N}:m>n\}= A_{\beta }\ne\phi\),所以elim所期待的【自然数皆有限数\(\displaystyle\bigcap_{n=1}^{\infty}\)\(\{m\in\mathbb{N}:m>n\}=\phi\).都是极其浅显的东西】是不会有人把它们作为定理或习题提出来的!
最后正告elim数学命题的真伪只有通严谨的逻辑证明才能令人心服口服,靠耍赖撒泼得到的东西只能令人作呕!
|
|