数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{\textbf{拨乱反正}}\underset{n\to\infty}{\lim}(n+j)\)

[复制链接]
发表于 2025-4-10 05:49 | 显示全部楼层

elim,欲证\(\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就证明了 \(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
回复 支持 反对

使用道具 举报

发表于 2025-4-10 12:32 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-4-10 13:52 编辑
elim 发表于 2025-4-10 06:29
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...



elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 13:53 | 显示全部楼层

elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:29 | 显示全部楼层

       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:42 | 显示全部楼层
elim 发表于 2025-4-10 14:29
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...


       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:51 | 显示全部楼层
elim 发表于 2025-4-10 14:43
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...


        elim关于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》定义P9定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明:】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不存在,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不存在(否则\(v=\displaystyle\lim_{n→∞} n\)存在,这与\(v=\displaystyle\lim_{n→∞} n\)不存在的假设矛盾!)。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不存在,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就无矛盾的证明了 \(H_n{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
       其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼。那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理,逐步推导出命题的结论的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以elim的一切胡说八道均为循环论证,除了欺骗他的粉丝,别无任何可取之处!
.
回复 支持 反对

使用道具 举报

发表于 2025-4-10 17:30 | 显示全部楼层
elim 发表于 2025-4-10 15:12
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...


       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-11 10:53 | 显示全部楼层

elim关于\(H_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》P9页定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不是自然数!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的自然数。其证明如下:
【证明:】(反证法)若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不是自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)。同理根据皮亚诺公理,\(v-1\)的前趋\(v-2\)也不是自然数,……类此(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就证明了 \(H_n{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n\ne\phi\)!
其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼,实属可恶至极。
那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理(集合交并运算的运算规律),逐步推导出命题的结论(如\(v=\displaystyle\lim_{n\to\infty} n\)是自然数)的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以,elim的一切胡说八道均为循环论证!
.
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-11 12:24 | 显示全部楼层
对任意 \(m\in\mathbb{N},\;n\to\infty\) 时 \( n > m\) 故 \(m< \displaystyle\lim_{n\to\infty} n\)
\(\therefore\;\;\displaystyle\lim_{n\to\infty}n\) 不是自然数. 进而 \(\displaystyle\lim_{n\to\infty}n+j\) 也不是自然数.
孬种蠢疯的胡说八道再次验明坐实其数学白痴真身.
回复 支持 反对

使用道具 举报

发表于 2025-4-11 16:33 | 显示全部楼层

       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-1 12:28 , Processed in 0.089170 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表