数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(孬种搅局06\Huge\color{red}{\textbf{超穷数存在于}\mathbb{N}\textbf{之外}}\)

[复制链接]
发表于 2025-5-2 07:18 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-5-2 07:19 编辑

\(\huge\color{red}{再论\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)


       方嘉琳先生在《集合论》133页孤立序数的概念,方嘉琳先生认为:有直前(直接前趋)的序数叫孤立序数。没有直前(直接前趋)的序数叫极限序数。(参见方嘉琳《集合论》P133页定义3)。并指出有限序数中(除0外)皆为孤立序数,设\(\xi\)为序数,则开如\(\xi+\eta\)的序数也是孤立序数。而\(\omega,\omega+\omega\)等都是极限序数。(参见方嘉琳《集合论》P133页9—10行)。
       在康托尔《超穷数理论基础》中,给出了一个重要的实正整数生成法则,\(\overline{\overline{E_{\nu}}}=\)\(\overline{\overline{E_{\nu-1}}}+1\)。这个法则亦称康托尔实正整数第一生成法则。不难看出这个法与皮亚诺公理的第二条是一致的。其实质都是根据前的数生成后边的数数。所不同的是皮亚诺公理第二条是的对像是“每一个确定的自然数”;而康托尔实正整数第一生成法则的对像是已生成的实正整数整体(即已生成的实正数的集合)。
       康托尔在该书的75页给出了有穷基数的无穷数列1,2,3,…,\(\nu\),\(\omega,\omega+1\),…,不难看出这个\(\nu\)就是处于极限位置的序数的极限,即是\(\nu=\displaystyle\lim_{n \to \infty} n\)。康托尔认为实正整数“\(\nu\)既表示把一个个单位加上去的确切计数,又表示它们所汇集成的整体”(参见康托尔《超穷数理论基础》P42页18—19行),也就是\(\nu=\overline{\overline{\{1,2,…,\nu-1,\nu\}}}\),因为\(\nu\)直前\(\nu-1\),所以\(\color{red}{\nu是序数的极限,而不是}\)\(\color{red}{极限序数\omega!}\)。相对于最小可列数集\(\mathbb{N}=\{0,1,2,…,\nu-1,\nu\}\)而言,说\(\nu=\aleph_0\)也不为过!
       根据前面对数\(\nu\)的分析知道普通自然数集\(\mathbb{N}\)是由有限数和无穷数两大部分组成。亦即对于预先给定的,无论怎样大的自然数\(\alpha\),\(\mathbb{N}=\{n:n\le\alpha\}\)\(\cup\{n:n\le\alpha\}\)。因此ChatGPT说【自然数集集\(\mathbb{N}=\{1,2,3,4,…\}\)是一个无限集,意味着它的元无限,但每个自然数都是有限的,我们可以一个接着一个地数出来,对于任何自然数n,我们能找到一个更大的自然数n+1,但这个过程永远不会达到一个无穷大的自然数】是不严谨的。因为【自然数集集\(\mathbb{N}=\{1,2,…\}\)是一个无限集,意味着它的元无限】,那么表示自然数集\(\mathbb{N}\)中元素个数的自然数也就是无限的。这个表示\(\mathbb{N}\)中元素个数的自然数就不是有限的。就是说\(\overline{\overline{\mathbb{N}}}=\aleph_0\)就是无限的。普通自然数最原始的定义可是“表示事物的个数或编号的数叫自然数”(参见《辞海》自然数词条)。还有数学中的无穷大是集合,是大于预先给定的无论怎样大的正数E的所有数的全体,所以说“这个过程永远不会‘到达’一个无穷大的数”就不是业内人说的行话了。

回复 支持 反对

使用道具 举报

发表于 2025-5-2 08:29 | 显示全部楼层
elim根本就不知道什么是无数,当然也就不知道什么是超穷?\(nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!康托尔的超自然数是指超越无穷的自然然数,而不是指超越有限自然自然数的娄!认是白痴,看看康托尔的有穷基数的无穷序列1,2,…\(nu\),\(\omega,\omega+1\),……你自然知道!你反远穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

发表于 2025-5-2 08:44 | 显示全部楼层
elim根本就不知道什么是无数,当然也就不知道什么是超穷?\(nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!康托尔的超自然数是指超越无穷的自然然数,而不是指超越有限自然自然数的娄!认是白痴,看看康托尔的有穷基数的无穷序列1,2,…\(nu\),\(\omega,\omega+1\),……你自然知道!你反远穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

发表于 2025-5-2 08:46 | 显示全部楼层
elim根本就不知道什么是无数,当然也就不知道什么是超穷?\(nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!康托尔的超自然数是指超越无穷的自然然数,而不是指超越有限自然自然数的娄!认是白痴,看看康托尔的有穷基数的无穷序列1,2,…\(nu\),\(\omega,\omega+1\),……你自然知道!你反远穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-5-2 08:52 | 显示全部楼层
康托的实正整数集是\(\mathbb{N}\)的真扩充,如果把它记作 \(\mathbb{N^{\sigma}}\),\(\\\)
则它包含\(\mathbb{N}\)但含有大量超穷数. 就算的\(\displaystyle\lim_{n\to\infty}n\in\mathbb{N}^{\sigma}\),\(\\\)
也不属于\(\mathbb{N}\). 因为\(\mathbb{N}\) 不含超穷数是已被证明的事实。\(\\\)
把 \(\displaystyle\lim_{n\to\infty}n\in\mathbb{N}^{\sigma}\)偷换成 \(\displaystyle\lim_{n\to\infty}n\in\mathbb{N}\),
等于自报孬种白痴门户:   只会吃狗屎啼猿声驴打滚
哈哈哈哈春风顽瞎种真孬.
回复 支持 反对

使用道具 举报

发表于 2025-5-2 09:19 | 显示全部楼层
elim根本就不知道什么是无数,当然也就不知道什么是超穷?\(nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!康托尔的超自然数是指超越无穷的自然然数,而不是指超越有限自然自然数的娄!认是白痴,看看康托尔的有穷基数的无穷序列1,2,…\(nu\),\(\omega,\omega+1\),……你自然知道!你反远穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

发表于 2025-5-2 09:56 | 显示全部楼层
elim根本就不知道什么是无数,当然也就不知道什么是超穷?\(nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!康托尔的超自然数是指超越无穷的自然然数,而不是指超越有限自然自然数的娄!认是白痴,看看康托尔的有穷基数的无穷序列1,2,…\(nu\),\(\omega,\omega+1\),……你自然知道!你反远穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

发表于 2025-5-2 10:36 | 显示全部楼层
elim根本就不知道什么是无数,当然也就不知道什么是超穷?\(nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!康托尔的超自然数是指超越无穷的自然然数,而不是指超越有限自然自然数的娄!认是白痴,看看康托尔的有穷基数的无穷序列1,2,…\(nu\),\(\omega,\omega+1\),……你自然知道!你反远穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

发表于 2025-5-2 10:59 | 显示全部楼层
无穷,超穷数当然不是有限数吧?无穷自然数是普普通自然数(即表示事物个数或编号的数),超穷自然 在普通自然数之外;【自然数皆有限数】是一个伪命题(最多只能算作是一个猜想)。因此它不作为证明“无穷自然数和超穷自然数”不是自然的论据。其实你根本就不知道什么是无穷自然数,当然也就更不知道什么是超穷自然数了?\(nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!康托尔的超自然数是指超越无穷的自然然数,而不是指超越有限自然自然数的数!谁是白痴,看看康托尔的有穷基数的无穷序列1,2,…\(nu\),\(\omega,\omega+1\),……你自然知道!你把无穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

发表于 2025-5-2 13:51 | 显示全部楼层
无穷,超穷数当然不是有限数吧?无穷自然数是普普通自然数(由普通自然数的定义:表示事物个数或编号的数叫自然数,如\(\displaystyle\lim_{n \to \infty} n\)、\(\aleph_0\)是无穷自然数,因你没有任何理由说表示事物个个无限多的数不是自然数)。超穷自然数是超越无穷自然数的数(如\(\omega,\omega+j(j\in\mathbb{N})\)等数)它在普通自然数之外;【自然数皆有限数】是一个伪命题(最多只能算作是一个猜想)。因此它不能作为证明“无穷自然数和超穷自然数”不是自然数的论据。其实你根本就不知道什么是无穷自然数,当然也就更不知道什么是超穷自然数了?\(\nu=\displaystyle\lim_{n \to \infty} n\)是无穷自然数,而不是超穷自然数!你把无穷数当成超穷数才是【自曝孬种白痴门户】,其种真孬!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-17 01:11 , Processed in 0.102531 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表