数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\textbf{驴滚论坛:}\;\color{red}{\textbf{日发愈百老痴贴}}\)

[复制链接]
发表于 2025-7-30 07:07 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之三

​
       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-30 07:09 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之三

​
       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-30 07:10 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之三

​
       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-30 07:14 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之三

​
       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-30 07:17 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之三

​
       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-30 07:21 | 显示全部楼层
你反复重发(发了删,删了又发)被批臭的帖子,导致综合论坛产生霸屏,为计么要我买单?!
回复 支持 反对

使用道具 举报

发表于 2025-7-30 07:24 | 显示全部楼层
你反复重发(发了删,删了又发)被批臭的帖子,导致综合论坛产生霸屏,为计么要我买单?!
回复 支持 反对

使用道具 举报

发表于 2025-7-30 14:43 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之三


       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-31 04:55 | 显示全部楼层

       elim你她娘的不是很懂自然数\(\mathbb{N}\)吗?你诜说以下命题的证明哪步错了?为什么错了?你若说不出个子午卯酉,你龟儿子才是【数学白痴厚颜无耻网痞流氓畜生不如】!你两年就扬言想把我怎么样,你龟儿子也不屙泡尿照照自己,你能把我怎么样?对于一个90多岁的老人,老子也会骂人!若因骂了你就犯了哪条天规,可能还没有哪个监狱会接收一个90多岁的罪犯!你妈的既然很懂集合论,很懂数学,很不【数学白痴厚颜无耻网痞流氓畜生不如】,哪你就用现行数学的集合论知识,用皮亚诺公理,用康托尔的自然生成法则证明下列命题什么哪步错了。事实上你离开那个狗屁不如的“底层逻辑”,你根证明不了\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!下面欢迎e大教主用集合论或自然数理评判以下命题及证明的对错!
       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-31 11:00 | 显示全部楼层
自然数\(\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中的最大数


        因为ω是极限序数,所以\(\nu(=\displaystyle\lim_{n \to \infty}n\)不是ω的直接前趋,所以\(\displaystyle\lim_{n \to \infty}(n\)\(+1)≠ω\),又因ω的后继是ω+1,所以\(\displaystyle\lim_{n \to \infty}(n+1)\)也不是ω的后继。所以\(\displaystyle\lim_{n \to \infty}(n+1)<ω\)(数的三歧性),所以\(\displaystyle\lim_{n \to \infty}(n+1)\in\mathbb{N}\)(即皮亚诺公理对\(\nu=\displaystyle\lim_{n \to \infty}n\)成立)。因为\(\displaystyle\lim_{n \to \infty}(n+1)>\)\(\displaystyle\lim_{n \to \infty}n\),所以\(\nu=\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中的最大数.这也是在\(\mathbb{N}\)中只有更大没有最大的内在原因。其实,就算你所以野蛮地把\(\displaystyle\lim_{n \to \infty}n\)驱逐出\(\mathbb{N}\),你也证明不了\(\mathbb{N}\)中的元素都是有限自然数!因为\(\mathbb{N}\)中值为无穷的元素还很多嘛!故此,eim的\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)纯属扯淡!想以此证明【自然数皆有限数】纯属妄想!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 22:07 , Processed in 0.099938 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表