数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{\textbf{ 瞎目测}\color{navy}{\textbf{源起}}\textbf{蠢可达}}\)

[复制链接]
发表于 2025-8-11 21:19 | 显示全部楼层

在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…,j\cdot+\nu\}\) . 特别的j=0时,\(\Omega_0=\{0,1,2,…\nu\}=\mathbb{N}\). 所以无论民科领袖有多么抵触,都有\(\color{red}{\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}!}\),所以哪怕elim把牛皮吹上天,你都莫法否定\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

发表于 2025-8-12 03:30 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都有\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)!所以elim的一切胡搅蛮缠都是反现行数学的铁证。elim至今仍坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),实在不可救药!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 09:37 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:05 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:34 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:36 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:39 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:42 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:44 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 12:57 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页,第19—20行),ω表示第一个超穷数。Cantor非负整数集为\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)  .  其中,\(\Omega_j=\{j\cdot\omega,\)\(j\cdot\omega\)\(+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 19:19 , Processed in 0.099907 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表