对于孪生素数:p,p+2,则[p^2~(p+2)^2]区间至少有2对孪生素数
证明:
根据崔坤证明了的⊿=0.8487*p/(lnp)^2【https://idea.cas.cn/zhhh/sxwlhxytw/sx/info/2025/552012.html】
要使得⊿为严格单调增函数,则p>e^2,
所以满足[⊿]≥2的最小的孪生素数是:(29,31);
故:⊿最小值是0.8487*29/(ln29)^2≈2.17
由于⊿是下界值,而由于⊿为整数,故有⊿最小值2
由于[3^2,5^2],[5^2,7^2],[11^2,13^2],[17^2,19^2],都有2对孪生素数对,
[3^2,5^2]:{11,13},{17,19}共2对
[5^2,7^2]:{:29,31},{41,43}共2对
[11^2,13^2]:{137,139},{149,151}共2对
[17^2,19^2]:{311,313},{347,349}共2对
故综上所述:对于孪生素数:p,p+2,则[p^2~(p+2)^2]区间至少有2对孪生素数
证毕。
(崔坤于2025年09月03日于即墨)
例题:
419^2~421^2,[175561,177241]:
{175631,175633},
{175757,175759},
{175781,175783},
{175937,175939},
{175961,175963},
{175991,175993},
{176021,176023},
{176051,176053},
{176087,176089},
{176159,176161},
{176327,176329},
{176417,176419},
{176459,176461},
{176507,176509},
{176549,176551},
{176597,176599},
{176609,176611},
{176711,176713},
{176777,176779},
{176789,176791},
{176807,176809},
{176921,176923},
{177011,177013},
{177209,177211}
共24对
[⊿]=[0.8487*419/(ln419)^2]=9
24>9自洽 |