|
|
elim又发宿帖称【在现行数学中, 数列(菲赫金哥尔兹称其为整序变量)\(\{a_n\}\)的定义域为\(\mathbb{N}_+=\{m∈N:m>0\}\)上的函数, 而\(\lim n=∞\)不在数列的定义域中, 因此,\(a_∞\)无定义。所以一般地\(\lim a_n=a_∞\)不成立.滚驴蠢可达的猿声啼不住, 现行数学的轻舟已过万重山】春风晚霞试问elim,为什么\(\displaystyle\lim_{n \to \infty} n=∞\)不在定义域中?①、是\(\displaystyle\lim_{n \to \infty} n\)\(≤0\)吗?你的依据是什么?你论证的“底层逻辑”又是什么?②、是\(\displaystyle\lim_{n \to \infty} n=∞\)不属于\(\mathbb{N}\)吗?你的依据是什么?你论证的“底层逻辑”又是计么?elim,你必须知晓\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)这只是你期待的结果,并非是经得起逻辑推敲的数学事实!所以,即使你每天把被批臭批烂的宿帖发上几百次,你都无法改变\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)这一事实!至于你罗列了一些说ω=\(\mathbb{N}\)的书,我百度搜索“有哪些数学家认为ω=N?”得到的回答是〖\(\color{red}{没有}\)数学家认为ω=N!(截图附后)〗一般地说elim的胡说八道是不可信的(谁信谁倒霉)!为了让数学人信奉你的观点,elim务必讲清楚\(\displaystyle\lim_{n \to \infty} n=\infty\)为什么不属于\(\mathbb{N}\)!否则你除了蒙骗你的信徒,你还能蒙骗谁呢?
|
|