数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 歌德三十年

[原创]“马氏分流归纳法”证题示例

[复制链接]
 楼主| 发表于 2011-3-13 22:43 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

各位网友:
有人将我文2°-2中2((k+1)+2)={1+2*3}(素数)+{3+2((k+1)-3)}(素数)说成是“把绝大多数的偶数归结为7和另一个素数之和”---这种说法完全是说者自以为是的断章取义---是说者在理论推导中将k与具体数值相联系的感性思维所获得的事物的“表象”。在数学归纳法证题的过程第二步2°,是在假设n=k时命题成立后,利用假设所获得的条件进一步推导出n=k+1时命题也成立---这完全是理论推导(理性思维)的过程---是不能用具体值来说明的。而说者却时时处处用具体值来说话,从而得出“把绝大多数的偶数归结为7和另一个素数之和”的“表象”。在2°-2中利用假设条件推理,完全可以推导出无穷多个2((k+1)+2)表二奇素数之和的形式。例如:2((k+1)+2)={1+2*6}(素数)+{3+2((k+1)-6)}(素数),2((k+1)+2)={1+2*9}(素数)+{3+2((k+1)-9)}(素数),......。可我为什么不那样做呢?因为不需要也不必要更多的表达形式,只要那一种形式足矣!那一种形式就足以证明2((k+1)+2)是可以表二奇素数之和的---这正是数学归纳法证明第二步2°所必须必要的---只求n=k+1时命题也成立,这才是数归法证题第二步2°的“本质”。
理论就是理论,数理逻辑与其不悖,实例具体值奈何不得。她可能与您的感性思维不相吻合,那谁也没有办法---只能靠自己的“悟性”来解决了。只有科学的理性思维才能透彻事物的本质。
望再三思。谢谢;
 楼主| 发表于 2011-3-16 22:21 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

各位网友:
数学归纳法所根据的原理是自然数的一个最基本的性质---最小数原理.
(最小数原理)定理 任意一个非空集中,必有一个最小数.

设N是一个自然数的非空集.在N中任意取出一个数m.从1到m共有m个自然数,所以N中不超过m的数最多有m个.因为这是有限个数,所以其中有一个最小数.用k表示这个最小数.k对于N中不超过m的数来说是最小的,而N中其余的数都比m大.所以k就是N中的最小数.
证毕
(数学归纳法原理)定理 设有一个与自然数n有关的命题.如果
1°当n=1时命题成立;
2°假定n=k时成立。则n=k+1时命题也成立;那么这个命题对于一切自然数n都成立.G
证(反证法)略.
供大家参考.
 楼主| 发表于 2011-3-19 22:43 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

刘招荣的证明好,太好了;刘招荣的证明妙,太妙了。他的证明思路与本人的思路如出一辙。不过,刘招荣的证明繁,太繁了;刘招荣的证明绕,太绕了---远不及我的证明那样简洁明了。烦请诸位网友指教。
 楼主| 发表于 2011-3-20 18:14 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

各位网友:
数学归纳法所根据的原理是自然数的一个最基本的性质---最小数原理.
(最小数原理)定理 任意一个非空集中,必有一个最小数.

设N是一个自然数的非空集.在N中任意取出一个数m.从1到m共有m个自然数,所以N中不超过m的数最多有m个.因为这是有限个数,所以其中有一个最小数.用k表示这个最小数.k对于N中不超过m的数来说是最小的,而N中其余的数都比m大.所以k就是N中的最小数.
证毕
(数学归纳法原理)定理 设有一个与自然数n有关的命题.如果
1°当n=1时命题成立;
2°假定n=k时成立。则n=k+1时命题也成立;那么这个命题对于一切自然数n都成立.
证(反证法)略.
供大家参考.
 楼主| 发表于 2011-3-23 22:33 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

各位网友:
有人将我文2°-2中2((k+1)+2)={1+2*3}(素数)+{3+2((k+1)-3)}(素数)说成是“把绝大多数的偶数归结为7和另一个素数之和”---这种说法完全是说者自以为是的断章取义---是说者在理论推导中将k与具体数值相联系的感性思维所获得的事物的“表象”。在数学归纳法证题的过程第二步2°,是在假设n=k时命题成立后,利用假设所获得的条件进一步推导出n=k+1时命题也成立---这完全是理论推导(理性思维)的过程---是不能用具体值来说明的。而说者却时时处处用具体值来说话,从而得出“把绝大多数的偶数归结为7和另一个素数之和”的“表象”。在2°-2中利用假设条件推理,完全可以推导出无穷多个2((k+1)+2)表二奇素数之和的形式。例如:2((k+1)+2)={1+2*6}(素数)+{3+2((k+1)-6)}(素数),2((k+1)+2)={1+2*9}(素数)+{3+2((k+1)-9)}(素数),......。可我为什么不那样做呢?因为不需要也不必要更多的表达形式,只要那一种形式足矣!那一种形式就足以证明2((k+1)+2)是可以表二奇素数之和的---这正是数学归纳法证明第二步2°所必须必要的---只求n=k+1时命题也成立,这才是数归法证题第二步2°的“本质”。
理论就是理论,数理逻辑与其不悖,实例具体值奈何不得。她可能与您的感性思维不相吻合,那谁也没有办法---只能靠自己的“悟性”来解决了。只有科学的理性思维才能透彻事物的本质。
望再三思。谢谢;
 楼主| 发表于 2011-3-29 11:05 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

各位网友:
数学归纳法所根据的原理是自然数的一个最基本的性质---最小数原理.
(最小数原理)定理 任意一个非空集中,必有一个最小数.

设N是一个自然数的非空集.在N中任意取出一个数m.从1到m共有m个自然数,所以N中不超过m的数最多有m个.因为这是有限个数,所以其中有一个最小数.用k表示这个最小数.k对于N中不超过m的数来说是最小的,而N中其余的数都比m大.所以k就是N中的最小数.
证毕
(数学归纳法原理)定理 设有一个与自然数n有关的命题.如果
1°当n=1时命题成立;
2°假定n=k时成立。则n=k+1时命题也成立;那么这个命题对于一切自然数n都成立.
证(反证法)略.
供大家参考.
 楼主| 发表于 2011-4-1 09:13 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

心有一只歌先生:请再仔细看看清楚!
潘氏兄弟说:“利用陈景润的加权筛法不可能证明命题{1,1}。”
王元说:“用目前的方法的改进不可能证明(1,1)。”
杨乐说:“陈景润的证明是不可能到达1+1的。”
刘建亚说:“再用筛法去证明{1+1}几乎是不可能的,只有发展**性的新方法,才有可能证明{1+1}”
请问心有一只歌,潘氏兄弟、王元、杨乐、刘建亚等官科的如上说,是不是否定了先前的“证猜路线”!!!即使你说的(1+2)中必然含有(1+1)是正确的,那您能否定大师们的如上说嘛?那于哥猜的证明有何意义呢?君闭眼不见一批又一批的民科沿着错误的证猜路线前赴后继地扑入泥潭、不可自拔的惨状。而您却一再坚持对错误的证猜路线进行辩护,您让我说什么好呢?说“那就是有意坑民害民了”实在是冤枉您了。因为您根本就没有自知之明---身陷泥潭而不自知。可怜啊,可怜。可恨啊,可恨。真真地可怜加可恨!
正是:王元结舌瞪眼瞧.
“9+9”到“1+2”,无奈哥猜半分毫。
马氏分流归纳法,心哥怀恨瞪眼瞧。
素数定理上帝造,无奈哥猜半分毫。
中华马氏新定理,王元结舌瞪眼瞧。
注:中华马氏新定理---马氏奇合数定理、马氏奇素数定理。
 楼主| 发表于 2011-4-5 17:21 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

“造素数表必须先有一些小素数,而且必须首先定义什么样的数是素数”---那些小素数2,3,5,7,...p是如何得来的,是您天生就知之?p多大是大,多小是小,其界限在哪?请花齐空大师“文明”回答。无须心哥无脸人自以为是地涂脂抹粉和喷粪。
王元结舌瞪眼瞧,心哥狂吠冲天嚎。
马氏奇合数定理: 若m∈{2ij+i+j|i,j∈N+} 则{1+2m}必表不小于9的奇合数
证明:令m=2ij+i+j (i,j∈N+)
显然(2ij+i+j)∈{2ij+i+j|i,j∈N+}
故m∈{2ij+i+j|i,j∈N+}
那么 {1+2m}={1+2(2ij+i+j)}={(2i+1)(2j+1)}
显然 {(2i+1)(2j+1)}表不小于9的奇合数
证毕.
马氏奇素数定理: 若m∈CN+{2ij+i+j|i,j∈N+} 则{1+2m}必表奇素数
证明:设m∈CN+{2ij+i+j|i,j∈N+}
则由 CN+{2ij+i+j|i,j∈N+}【*】{2ij+i+j|i,j∈N+}={}和(2ij+i+j)∈{2ij+i+j|i,j∈N+}知 m≠2ij+i+j ∴ {1+2m}≠{1+2(2ij+i+j)}={(2i+1)(2j+1)}而{(2i+1)(2j+1)}表不小于9的奇合数 ∴{1+2m}不能表不小于9的奇合数 故而只能表奇素数
证毕.
注释:集{2ij+i+j|i,j∈N+}={4,7,10,12,13,16,17,19,......}
        集 CN+{2ij+i+j|i,j∈N+}={1,2,3,5,6,8,9,11,......}
        集N+={1,2,3,4,5,6,7,8,9,10,......}
 楼主| 发表于 2011-4-11 23:00 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

回复:沪上兵,请看你给我的回帖。
“2º-2.      若当      k=(2ij+i+j)∈{2ij+i+j/i,j∈N+}时 则有二假设推论
......
假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数
证 :
由以上假设知{5+2(k-m)}={5+2((2ij+i+j)-m)}表素数,而{5+((m+5q)-m)}={5(1+2q)}表奇合数
故2ij+i+j≠m+5q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+5q
∴{1+2(m+5q)}不能表不小于9的奇合数 故{1+2(m+5q}只能表大于9的素数
证毕 .
      以上过程有没有哪个地方不符合你的证明逻辑?”
你的帖子,没有哪个地方符合我的逻辑!你的帖子,没有哪个地方符合我的逻辑!!你的帖子,没有哪个地方符合我的逻辑!!!
请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗?请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗??
那些文字完全是打着已被你这个小丑扭曲了的作者思路的幌子,自以为是地臆造杜撰、无中生有的怪胎---与我的论文有什么关系?将自己臆造杜撰出来的怪物强加于人是何道理?还恬不知耻的说“礼貌待你”---一副沪上流氓的嘴脸。实话说,你的学识表现不值尊重。你也与心哥等无脸人一样---是个给人抹屎喷粪的天才。
沪上兵与窗前柳枝、心哥等无脸人---是一丘之貉。都担不起“尊重”二字的分量。
 楼主| 发表于 2011-4-13 21:46 | 显示全部楼层

[原创]“马氏分流归纳法”证题示例

哥猜原题是:不小于6的偶数都可表二奇素数之和。用最通俗的数理语言描述为:形如2(n+2)
能够找到一个不大于n的正整数m 使得2(n+2)={1+2m}(素数)+{3+2(n-m)}(素数) 成立.
其证明请详见本吧《哥德巴赫猜想真理性之证明》一文。
哥猜问题近三百年不得解决,其主要原因是人们把原本朴素简单的命题复杂化了。越搞越复杂以致陷入泥潭。提请初涉者务必注意这一点,千万不要步陈景润氏后尘。
谢谢。


您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-19 10:08 , Processed in 0.086604 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表