|

楼主 |
发表于 2019-2-22 13:50
|
显示全部楼层
500亿的样本区间偶数连乘式的素对计算值相对误差的统计数据:
50000000002-50000000100 : n= 50 μ= .1571 σx= .0001 δ(min)= .1569 δ(max)= .1573 ;
把 μ= .1571 代人
素对下界式 inf( m )=Sp( m )/(1+μ) 来计算400亿的连续偶数的素对下界 inf( m ):
G(40000000000) = 64411146 ;
inf( 40000000000 )≈ 64358255.6 , Δ≈-0.0008211 ,infS(m) = 48268691.67 , k(m)= 1.33333
G(40000000002) = 102364420;
inf( 40000000002 )≈ 102278955.2 , Δ≈-0.000835 ,infS(m) = 48268691.68 , k(m)= 2.11895
G(40000000004) = 48813213;
inf( 40000000004 )≈ 48771775.4 , Δ≈-0.000849 ,infS(m) = 48268691.68 , k(m)= 1.01042
G(40000000006) = 48934047;
inf( 40000000006 )≈ 48895557.8 , Δ≈-0.000787 ,infS(m) = 48268691.68 , k(m)= 1.01299
G(40000000008) = 96619954;
inf( 40000000008 )≈ 96537383.4 , Δ≈-0.000855 ,infS(m) = 48268691.68 , k(m)= 2
G(40000000010) = 66369957;
inf( 40000000010 )≈ 66314746.6 , Δ≈-0.000832 ,infS(m) = 48268691.69 , k(m)= 1.37387
G(40000000012) = 57974268;
inf( 40000000012 )≈ 57922430 , Δ≈-0.000894 ,infS(m) = 48268691.69 , k(m)= 1.2
G(40000000014) = 105425521;
inf( 40000000014 )≈ 105341837.8 , Δ≈-0.000794 ,infS(m) = 48268691.69 , k(m)= 2.18241
G(40000000016) = 48301184;
inf( 40000000016 )≈ 48268691.7 , Δ≈-0.000673 ,infS(m) = 48268691.69 , k(m)= 1
G(40000000018) = 54615221;
inf( 40000000018 )≈ 54572789.8 , Δ≈-0.000777 ,infS(m) = 48268691.7 , k(m)= 1.1306
G(40000000020) = 128835124;
inf( 40000000020 )≈ 128716511.2 , Δ≈-0.000921 ,infS(m) = 48268691.7 , k(m)= 2.66667
G(40000000022) = 49015721;
inf( 40000000022 )≈ 48974335.4 , Δ≈-0.000844 ,infS(m) = 48268691.7 , k(m)= 1.01462
time start =12:37:20 ,time end =12:50:47 ,time use =
关系式:inf(m)=infS(m)*k(m);k(m)——素因子系数,波动幅度系数。
区域素对下界值infS(m)显示了区域下界值随偶数增大而缓慢增大的特征。
下界计算式:
inf( 40000000000 ) = 1/(1+ .1571 )*( 40000000000 /2 -2)*p(m) ≈ 64358255.6
inf( 40000000002 ) = 1/(1+ .1571 )*( 40000000002 /2 -2)*p(m) ≈ 102278955.2
inf( 40000000004 ) = 1/(1+ .1571 )*( 40000000004 /2 -2)*p(m) ≈ 48771775.4
inf( 40000000006 ) = 1/(1+ .1571 )*( 40000000006 /2 -2)*p(m) ≈ 48895557.8
inf( 40000000008 ) = 1/(1+ .1571 )*( 40000000008 /2 -2)*p(m) ≈ 96537383.4
inf( 40000000010 ) = 1/(1+ .1571 )*( 40000000010 /2 -2)*p(m) ≈ 66314746.6
inf( 40000000012 ) = 1/(1+ .1571 )*( 40000000012 /2 -2)*p(m) ≈ 57922430
inf( 40000000014 ) = 1/(1+ .1571 )*( 40000000014 /2 -2)*p(m) ≈ 105341837.8
inf( 40000000016 ) = 1/(1+ .1571 )*( 40000000016 /2 -2)*p(m) ≈ 48268691.7
inf( 40000000018 ) = 1/(1+ .1571 )*( 40000000018 /2 -2)*p(m) ≈ 54572789.8
inf( 40000000020 ) = 1/(1+ .1571 )*( 40000000020 /2 -2)*p(m) ≈ 128716511.2
inf( 40000000022 ) = 1/(1+ .1571 )*( 40000000022 /2 -2)*p(m) ≈ 48974335.4
|
|