|

楼主 |
发表于 2018-4-10 21:19
|
显示全部楼层
偶数M (M=2A)表为两个素数和的表法数值是波动的。本帖子的高精度表法数计算式同样具有波动性。
因此很容易的可以从表法数计算式中得出偶数表法数的下界计算值inf(m)以及区段下界值 infs(m)。
两者关系:inf(m)= infs(m)×k(m)
表偶数为两个素数和的表法数S(m)的区段下界值S(M)min,有
S(M)min ≥ infs(m)=0.826(A-2)/2 *π(1-2/p)
就是 infs(m)=0.413(A-2)*π(1-2/p);
这里的p是√(M-2)以内的全部奇素数。
实例计算如下:
G(10000000000) = 18200488;
inf( 10000000000 )≈ 18192520.4 , Δ≈-0.0004378,infS(m)= 13644390.26 , k(m)= 1.33333
G(10000000002) = 27302893;
inf( 10000000002 )≈ 27288780.5 , Δ≈-0.0005169,infS(m)= 13644390.27 , k(m)= 2
G(10000000004) = 13655366;
inf( 10000000004 )≈ 13644390.3 , Δ≈-0.0008038,infS(m)= 13644390.27 , k(m)= 1
G(10000000006) = 13742400;
inf( 10000000006 )≈ 13737209.3 , Δ≈-0.0003777,infS(m)= 13644390.27 , k(m)= 1.0068
G(10000000008) = 27563979;
inf( 10000000008 )≈ 27548673.7 , Δ≈-0.0005553,infS(m)= 13644390.27 , k(m)= 2.01905
G(10000000010) = 28031513
inf( 10000000010 )≈ 28018960 , Δ≈-0.0004478,infS(m)= 13644390.28 , k(m)= 2.05351
G(10000000012) = 13654956;
inf( 10000000012 )≈ 13647157.3 , Δ≈-0.0005711,infS(m)= 13644390.28 , k(m)= 1.0002
G(10000000014) = 27361348;
inf( 10000000014 )≈ 27348233.3 , Δ≈-0.0004793,infS(m)= 13644390.28 , k(m)= 2.00436
G(10000000016) = 13708223;
inf( 10000000016 )≈ 13701479.8 , Δ≈-0.0004919,infS(m)= 13644390.29 , k(m)= 1.00418
G(10000000018) = 13781412;
inf( 10000000018 )≈ 13776842.4 , Δ≈-0.0003316,infS(m)= 13644390.29 , k(m)= 1.00971
G(10000000020) = 37335123;
inf( 10000000020 )≈ 37319942.4 , Δ≈-0.0004066,infS(m)= 13644390.29 , k(m)= 2.73519
G(10000000022) = 13653503;
inf( 10000000022 )≈ 13646792.1 , Δ≈-0.0004915,infS(m)= 13644390.29 , k(m)= 1.00018
G(10000000024) = 16587802;
inf( 10000000024 )≈ 16575407.5 , Δ≈-0.0007472,infS(m)= 13644390.3 , k(m)= 1.21481
G(10000000026) = 28871083;
inf( 10000000026 )≈ 28857101.3 , Δ≈-0.0004843,infS(m)= 13644390.3 , k(m)= 2.11494
G(10000000028) = 13665084;
inf( 10000000028 )≈ 13661050.1 , Δ≈-0.0002952,infS(m)= 13644390.3 , k(m)= 1.00122
G(10000000030) = 19127680;
inf( 10000000030 )≈ 19121318.9 , Δ≈-0.0003326,infS(m)= 13644390.3 , k(m)= 1.40141
G(10000000032) = 32355048;
inf( 10000000032 )≈ 32342258.5 , Δ≈-0.0003953,infS(m)= 13644390.31 , k(m)= 2.37037
在具有波动性的偶数M的素对下界计算值 inf( m)的相对误差绝对值小于0.001的情况下,inf( m )图形几乎与真值 G(M)的图形重合。大小变化规律几乎完全一致。
而偶数表法数的区域下界函数值infS(m)则随着偶数的增大,始终缓慢的攀升,表明大偶数的表法数下限是逐渐上升的。 |
|