数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{没有无穷大自然数}\)

[复制链接]
发表于 2025-3-2 07:46 | 显示全部楼层
是的。根据皮亚诺公理,\(v=\displaystyle\lim_{n\to\infty} n\)是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)的后继\(v'=\displaystyle\lim_{n\to\infty} n+1\)也是自然数!这有什么不对,因为在皮亚诺实正整数序列中,有限后边有无限,无限后边有超限。试问elim,\(\displaystyle\lim_{n\to\infty} n>\)\(\displaystyle\lim_{n\to\infty} n+1\)的依据是什么?该不会是我elim说的【自然数皆有限数】,所以\(\displaystyle\lim_{n\to\infty} n+1<\)\(\displaystyle\lim_{n\to\infty} n\)吧?典型的循环论证,真他娘的扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:23 | 显示全部楼层
elim 发表于 2025-3-2 15:38
孬种不等式\(v>v+1\)的依据是“自然数 v”
大于任意自然数(其中 \(v=\displaystyle\lim_{n\to\infty}n\) ...

放你娘的臭狗屁!【\(v>v+1\)的依据是“自然数v”大于任意自然数】,那么【“自然数v”大于任意自然数】的依据又是什么呢?所以elim的这段狗屁言论的实质是:因为\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数!像这种循环论证的错误,学过平面几何的初中生都不会犯!elim你还好意思在这里显摆!真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:24 | 显示全部楼层
elim 发表于 2025-3-2 21:50
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:26 | 显示全部楼层
elim 发表于 2025-3-2 22:25
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:29 | 显示全部楼层
elim 发表于 2025-3-2 22:29
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:31 | 显示全部楼层
elim 发表于 2025-3-2 22:30
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:34 | 显示全部楼层
elim 发表于 2025-3-2 22:32
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:37 | 显示全部楼层
elim 发表于 2025-3-2 22:36
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-3-2 22:39 | 显示全部楼层
春风晚霞 发表于 2025-3-1 16:50
是的。根据皮亚诺公理,\(v=\displaystyle\lim_{n\to\infty} n\)是自然数,所以\(\displaystyle\lim_{n\to\ ...

对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任意自然数因而\(v\)不是自然数, 否则\(v+1\)是
自然数从而大于任意自然数的\(v\)大于自然数\(v+1\).
\(v\)与皮亚诺公理不合, 再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数
孬种所有谬论的终极依据是其人太蠢种太孬

回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:48 | 显示全部楼层
elim 发表于 2025-3-2 22:39
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-1 04:24 , Processed in 0.082880 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表