数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 蔡家雄

勾股数新公式

  [复制链接]
 楼主| 发表于 2023-3-19 22:06 | 显示全部楼层
蔡氏完全循环节问题

若 3^(2n)+2^(2n+1) 是素数,

则 10 是素数 3^(2n)+2^(2n+1) 的原根。

简记为  \(g(3^{2n}+2^{2n+1})=10\) .
回复 支持 反对

使用道具 举报

发表于 2023-3-20 08:37 | 显示全部楼层
本帖最后由 Treenewbee 于 2023-3-20 08:39 编辑

若 3^n+2^(n+1) 是素数,

则 3 是素数 3^n+2^(n+1) 的最小原根。
---------------------------------------------


{{1,3},{2,3},{3,3},{4,3},{5,5},{6,3},{9,5},{11,5},{12,3},{15,5},{17,5},{22,3},{32,3},{33,5},{35,5},{36,3},{46,3},{47,5},{59,5},{63,5},{80,5}}

评分

参与人数 1威望 +15 收起 理由
wlc1 + 15 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2023-3-20 08:38 | 显示全部楼层
蔡家雄 发表于 2023-3-19 22:06
蔡氏完全循环节问题

若 3^(2n)+2^(2n+1) 是素数,

若 3^(2n)+2^(2n+1) 是素数,

则 10 是素数 3^(2n)+2^(2n+1) 的原根。

------------------------------------
{{{2,10},{3,12},{4,10},{5,13},{6,10},{9,11},{11,14},{12,10},{15,19},{17,11},{22,10},{32,10},{33,13},{35,14},{36,10},{46,10},{47,11},{59,11},{63,20},{80,10}}

评分

参与人数 1威望 +15 收起 理由
wlc1 + 15 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-20 10:03 | 显示全部楼层
若 3^n+2^(n+1) 是素数,

5 是素数 3^n+2^(n+1) 的原根。

简记为  \(g(3^n+2^{n+1})=5\) .
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-20 13:04 | 显示全部楼层
蔡氏完全循环节问题

若 3^(2n)+2^(2n+1) 是素数,

则 10 是素数 3^(2n)+2^(2n+1) 的原根。

简记为  \(g(3^{2n}+2^{2n+1})=10\) .

已知 2n=2, 4, 6, 12, 22, 32, 36, 46, 80, ...
回复 支持 反对

使用道具 举报

发表于 2023-3-20 15:36 | 显示全部楼层
蔡家雄 发表于 2023-3-20 10:03
若 3^n+2^(n+1) 是素数,

则 5 是素数 3^n+2^(n+1) 的原根。

n<200时,结论正确:

{{1,5},{2,5},{3,5},{4,5},{5,5},{6,5},{9,5},{11,5},{12,5},{15,5},{17,5},{22,5},{32,5},{33,5},{35,5},{36,5},{46,5},{47,5},{59,5},{63,5},{80,5},{101,5},{154,5},{159,5},{173,5}}

评分

参与人数 1威望 +10 收起 理由
cz1 + 10 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2023-3-20 15:37 | 显示全部楼层
蔡家雄 发表于 2023-3-20 13:04
蔡氏完全循环节问题

若 3^(2n)+2^(2n+1) 是素数,

n<100时结论正确:

{{1, 10}, {2, 10}, {3, 10}, {6, 10}, {11, 10}, {16, 10}, {18, 10}, {23, 10}, {40, 10}, {77, 10}}

评分

参与人数 1威望 +10 收起 理由
wlc1 + 10 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-20 18:16 | 显示全部楼层
蔡氏完全循环节问题

若 3^(2n)+2^(2n+1) 是素数,

则 10 是素数 3^(2n)+2^(2n+1) 的原根。

简记为  \(g(3^{2n}+2^{2n+1})=10\) .

有 2n=2, 4, 6, 12, 22, 32, 36, 46, 80, 154, 236, 250, 992, ......
回复 支持 反对

使用道具 举报

发表于 2023-3-20 21:51 | 显示全部楼层
本帖最后由 Treenewbee 于 2023-3-21 10:39 编辑
蔡家雄 发表于 2023-3-20 21:05
若 (2n+1)^2+4 是素数,

且 2n+1 不能被 3 整除,


{{2,2},{3,2},{6,2},{8,2},{17,2},{18,2},{23,2},{32,2},{33,2},{36,2},{42,2},{47,2},{48,3},{51,2},{57,2},{62,2},{68,2},{77,2},{81,2},{83,2},{96,2},{101,2},{107,2},{108,2},{116,2},{117,2},{122,2},{126,2},{132,2},{137,2},{138,2},{143,2},{146,2},{153,2},{156,2},{158,2},{173,2},{186,2},{192,2},{201,2},{203,2},{212,2},{213,2},{227,2},{231,2},{237,2},{243,2},{251,2},{266,2},{273,2},{288,2},{296,2},{302,2},{303,2},{306,2},{311,2},{332,2},{333,2},{338,2},{342,2},{351,2},{353,2},{356,2},{371,2},{372,2},{377,2},{381,2},{383,2},{392,2},{393,2},{402,2},{411,2},{413,2},{422,3},{423,2},{426,2},{441,2},{452,3},{467,2},{476,2},{483,2},{486,2},{491,2},{498,2},{513,3},{527,3},{528,2},{536,3},{537,2},{543,2},{552,2},{558,2},{561,2},{572,2},{578,2},{587,2},{588,2},{591,2},{597,2},{617,2},{618,2},{623,2},{627,3},{642,2},{656,2},{657,2},{662,2},{668,2},{672,2},{681,2},{683,3},{696,2},{702,2},{707,2},{711,3},{723,2},{728,2},{737,2},{753,2},{758,2},{761,2},{762,2},{771,2},{792,2},{797,2},{806,2},{813,2},{816,3},{818,2},{821,2},{822,2},{836,2},{852,2},{861,2},{876,2},{878,2},{881,2},{902,2},{926,2},{932,3},{941,2},{942,3},{948,2},{962,2},{977,2},{978,3},{993,2}}

果然是:非2,即3,没大于3的 .结论错误,那是因为n不够大:
----------------------------------------------

{{1698,12},{5408,5},{6467,7},{9041,5},{15908,5},{17406,5},{17952,10},{18437,7},{18638,5},{18923,5},{20913,11},{20981,5},{22523,5},{22983,5},{23237,10},{24252,10},{25902,10},{26588,11},{28473,5},{29051,5},{30477,7},{30776,11},{31553,5},{32211,5},{32666,14},{32951,5},{33452,7},{34427,7},{34638,5},{34668,5},{35921,5},{36012,10},{36822,10},{40182,10},{41631,13},{41801,5},{42588,5},{43572,10},{46566,13},{47112,10},{48687,10},{49067,10},{49506,5},{49653,5},{52607,10},{52808,5},{54597,10},{58452,11},{58473,5},{58776,5},{59153,5},{60036,5},{60356,5},{60827,10},{62498,5},{62766,5},{66462,14},{66971,5},{67127,10},{67617,10},{69248,5},{69722,10},{70403,5},{70947,10},{72867,10},{75707,10},{79286,5},{79382,10},{80778,5},{81218,5},{83138,5},{83598,5},{83918,5},{84756,5},{85341,5},{87903,5},{88356,5},{90587,7},{91338,12},{91548,5},{91857,10},{93636,11},{97197,10},{98487,11},{103856,5},{105107,11},{105858,13},{109377,10},{109716,5},{110126,5},{113733,11},{114543,5},{114816,5},{116631,13},{116652,12},{117051,14},{117471,5},{118407,10},{120243,5},{123146,11},{124362,7},{125843,5},{127677,10},{130692,10},{135413,5},{136481,5},{139272,7},{139542,10},{144713,5},{147072,10},{148173,5},{148353,5},{151118,14},{151323,5},{151496,5},{151692,10},{153953,11},{154856,5},{155682,10},{156032,14},{156552,10},{157098,14},{159233,5},{159947,13},{163146,5},{165638,5},{165713,11},{167213,5},{169572,10},{171357,10},{173856,11},{176381,5},{176766,5},{176852,10},{177788,5},{179448,5},{179841,11},{181346,5},{181743,11},{186692,10},{188507,10},{189081,5},{190017,10},{193848,5},{193943,5},{197948,5},{199497,10},{200456,12},{201882,10},{203982,10},{204528,5},{205838,5},{207107,7},{208847,10},{209472,14},{210356,5},{211061,5},{216797,7},{217107,10},{218808,5},{219761,5},{221078,5},{223388,5},{225621,5},{226802,11},{227213,5},{228953,5},{229823,5},{230603,5},{231296,5},{232488,14},{233102,11},{233187,10},{234588,5},{235022,12},{236126,5},{240011,5},{244071,5},{244703,5},{245352,10},{246171,5},{247913,5},{249132,11},{251801,5},{254081,5},{254718,12},{256076,5},{258791,5},{260166,5},{260432,10},{265941,5},{268082,10},{268992,10},{269681,5},{274277,10},{274362,10},{275291,5},{276042,10},{276438,5},{277757,13},{278891,5},{280562,10},{280947,10},{284351,5},{284657,10},{284853,5},{288362,11},{288713,5},{288807,7},{289146,5},{290826,5},{292266,5},{298512,10},{299667,10},{300276,5},{300738,5},{301233,5},{302423,5},{302948,11},{303578,5},{303878,5},{304007,10},{305321,5},{305412,10},{305421,5},{306708,5},{310251,5},{312146,5},{312281,11},{312981,11},{316488,5},{317468,5},{318117,10},{319088,5},{321563,5},{321617,10},{323297,10},{323486,5},{325383,14},{326256,5},{326447,10},{327567,10},{328106,5},{328736,5},{330677,10},{330843,5},{331746,5},{331916,11},{332553,5},{333636,5},{333713,12},{336081,5},{336261,5},{338433,5},{340566,5},{340652,10},{345066,7},{348296,12},{348371,5},{349143,5},{350912,10},{351108,5},{353126,5},{356843,5},{357893,5},{361491,5},{363008,5},{364298,5},{366132,10},{368792,10},{370092,11},{370668,5},{370967,10},{373097,10},{374721,5},{377493,5},{380951,13},{382727,10},{382736,5},{386766,5},{386792,7},{387188,5},{387942,10},{389418,7},{391017,10},{391778,5},{392361,11},{394781,11},{395168,11},{395196,5},{395612,7},{400682,10},{402378,5},{403253,5},{403673,5},{404973,5},{408923,5},{409581,5},{410748,5},{416537,10},{417797,10},{418083,5},{421872,14},{423653,5},{424316,5},{426393,5},{428138,12},{429377,12},{429888,5},{430952,14},{433992,7},{434858,5},{435353,5},{436613,5},{437453,5},{438827,10},{439077,10},{439247,11},{440318,5},{441396,5},{441401,5},{441626,5},{442551,5},{445211,5},{448373,5},{448688,5},{453338,11},{454521,5},{455886,5},{456458,5},{456656,11},{460751,5},{462261,5},{463416,5},{465042,10},{465392,11},{467541,5},{471032,10},{471123,11},{472497,10},{474191,5},{474723,5},{475773,5},{475848,5},{481968,5},{482631,5},{482771,5},{482976,5},{486768,5},{488348,5},{489407,10},{489717,10},{493112,10},{493418,5},{494958,5},{496568,5},{497051,5},{506601,5},{506613,5},{506783,5},{507831,5},{511767,10},{512423,5},{514413,14},{515757,10},{516363,5},{517316,5},{517403,5},{519278,5},{520832,10},{521007,10},{521838,5},{524312,7},{527231,5},{527298,11},{530247,10},{531281,5},{533546,5},{535677,13},{536981,5},{540152,10},{541017,7},{541586,5},{541902,10},{542103,5},{542343,5},{545456,5},{545526,12},{546302,7},{547068,5},{547913,19},{548753,5},{554418,5},{555788,5},{557183,5},{557423,5},{558441,5},{563516,5},{564216,5},{564377,10},{564762,10},{565793,5},{567548,5},{568727,7},{569571,5},{570203,5},{570518,5},{570903,5},{571398,12},{571808,5},{575831,5},{577551,5},{581562,10},{582131,5},{582962,11},{584441,5},{585078,5},{587297,10},{590538,5},{593651,5},{594428,12},{597678,11},{598866,5},{598868,5},{601386,5},{601941,5},{602471,5},{605747,10},{606498,5},{609242,10},{612381,7},{616688,5},{616886,5},{617346,14},{618461,5},{619131,5},{620846,13},{621308,5},{623438,5},{623471,5},{624096,5},{626616,5},{629547,10},{630912,14},{631082,19},{631257,14},{631692,7},{634701,5},{635877,10},{635973,5},{637256,5},{638523,5},{639732,10},{639846,5},{642483,5},{642963,5},{643673,5},{645017,14},{648111,5},{648573,5},{649028,5},{649736,5},{651102,10},{651368,5},{652262,10},{655433,5},{655946,5},{655986,5},{656028,5},{658583,5},{658956,5},{660143,5},{661427,11},{665538,5},{667277,10},{669701,5},{671967,14},{672548,5},{676497,10},{679466,5},{680843,5},{683712,7},{685008,5},{691056,5},{692078,5},{694397,10},{694647,10},{695027,10},{697823,5},{699696,5},{701523,5},{701787,10},{708542,10},{714627,10},{716121,5},{719961,5},{723573,5},{724031,5},{729537,10},{729551,5},{730167,10},{730671,14},{731682,7},{733518,14},{734001,11},{736836,5},{737573,5},{739137,7},{739713,5},{739736,5},{740513,5},{741197,10},{744662,10},{746706,5},{749352,10},{749667,10},{755316,5},{756296,5},{763128,14},{766446,13},{766532,10},{767958,14},{768182,10},{769388,5},{769421,5},{772443,5},{772623,5},{773103,5},{774261,5},{774657,10},{776451,5},{778271,5},{779228,5},{779606,12},{780308,14},{780966,5},{782882,10},{782996,14},{784023,5},{786557,10},{786816,5},{787271,11},{788517,10},{789506,14},{790407,10},{790787,10},{790806,5},{790941,5},{791618,14},{792726,5},{793907,10},{793991,5},{794238,5},{795062,11},{797813,5},{799626,5},{805466,5},{808476,11},{810078,5},{811326,5},{813192,10},{814167,10},{814956,5},{817002,10},{817037,10},{817121,5},{817266,5},{817553,5},{817842,10},{817931,5},{817982,10},{818862,10},{819158,5},{823218,5},{827873,5},{828551,5},{831203,5},{833858,14},{834122,10},{834717,10},{836462,14},{836637,12},{838086,5},{840933,5},{843231,5},{846632,10},{849662,10},{849852,10},{850118,5},{854571,5},{857327,10},{860771,5},{863027,10},{865881,5},{868023,5},{868881,5},{869313,12},{873371,5},{873707,22},{874106,5},{874113,5},{874233,5},{876206,5},{878517,10},{879582,10},{880583,5},{886491,5},{886883,5},{890843,5},{893006,5},{893561,5},{897957,10},{898851,5},{899343,5},{899517,10},{901917,10},{903158,5},{905193,5},{908063,11},{908631,5},{909671,5},{909701,5},{913341,12},{914792,13},{918927,14},{922308,19},{923198,5},{925136,5},{925766,5},{926571,5},{926766,7},{928652,10},{929126,12},{929357,10},{933872,10},{934397,11},{934418,13},{937283,5},{938121,5},{939822,10},{941987,10},{945396,5},{947291,5},{948512,7},{950607,7},{950927,7},{952128,5},{953276,5},{954762,11},{956192,7},{958928,5},{960066,5},{960983,5},{961433,5},{961557,10},{962837,7},{963888,5},{966177,10},{968288,5},{968328,5},{969348,5},{970011,5},{970923,5},{976992,10},{978231,5},{978891,11},{979218,5},{983007,10},{985032,7},{985238,5},{985287,10},{986232,13},{989942,11},{994751,13},{994896,5},{996228,11},{996753,12},{999807,10}}


评分

参与人数 1威望 +10 收起 理由
蔡家雄 + 10 果然是:非2,即3,没大于3的,

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2023-3-20 21:51 | 显示全部楼层
若 (2n+1)^2+4 是素数,

且 2n+1 不能被 3 整除,

则 3 是素数 (2n+1)^2+4 的原根。
------------------------------------------------
{{81,5},{137,8},{237,7},{702,8},{758,5},{926,5},{1283,5},{1332,8},{1472,8},{1511,5},{1667,7},{1698,12},{2046,5},{2118,5},{2141,5},{2216,5},{2271,5},{2543,5},{2567,7},{2811,5},{2816,5},{3341,5},{3377,8},{3413,5},{3462,8},{3476,5},{3572,8},{3663,5},{3773,5},{3788,7},{3861,5},{4013,5},{4286,8},{4328,5},{4397,7},{4527,7},{4601,5},{4692,8},{4862,8},{5171,5},{5216,5},{5238,5},{5408,5},{5697,7},{5742,8},{5982,8},{6171,8},{6236,5},{6327,7},{6467,7},{6737,8},{6822,8},{7113,5},{7191,5},{7443,5},{7452,8},{7578,5},{7758,5},{7802,8},{8066,5},{8316,5},{8486,5},{8592,8},{8901,5},{9018,5},{9041,5},{9531,5},{9671,5}}

评分

参与人数 1威望 +10 收起 理由
蔡家雄 + 10 这个:不成立,,,,,

查看全部评分

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-4 01:42 , Processed in 0.096656 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表