数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{red}{^\star\;\textbf{ 陶哲轩: 无穷}\lim n\not\in\textbf{N}}\)1

[复制链接]
发表于 2025-11-6 11:49 | 显示全部楼层
elim 发表于 2025-11-6 04:32
春霞再咋驴滚, 其顽膳目测仍在反陶哲轩:

数学家陶哲轩在他的《陶哲轩实分析》第3版


定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-6 17:46 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

发表于 2025-11-11 06:11 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-12 18:56 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-13 06:15 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-14 03:17 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-15 04:44 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-15 23:06 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-15 23:15 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-15 23:18 | 显示全部楼层
春霞再咋驴滚, 其顽膳目测仍在反陶哲轩:

数学家陶哲轩在他的《陶哲轩实分析》第3版
第19页2~4行讲道: 自然数系能够超向无穷大,
但它不能取到无穷大,无穷大不是自然数.

\(\;^{\;}\)
故无穷大 \(\lim n\) 不是自然数. Dr. 陶哲轩的话
用序列方式可重述为 \(\{n\}\) 是无穷大量但不含
无穷大项. 亦即 \(\boxed{\lim n\not\in\mathbb{N}}\)

滚驴死磕陶哲轩的部分主题:

哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-7 15:27 , Processed in 0.079744 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表