若 (6n+3)^2+8 是素数,
且 2n+1 不能被 3 整除,
求 素数 (6n+3)^2+8 的最小原根:
{{2,3},{3,3},{5,3},{8,3},{9,3},{14,3},{18,3},{20,3},{21,3},{23,3},{24,3},{29,3},{35,3},{36,3},{42,3},{47,3},{53,3},{54,3},{57,3},{60,3},{66,3},{69,3},{77,3},{78,3},{80,3},{96,3},{104,3},{110,3},{111,3},{120,3},{122,3},{123,3},{126,3},{128,3},{131,3},{134,3},{137,3},{146,3},{150,6},{155,3},{156,3},{161,3},{162,3},{164,5},{167,3},{168,3},{173,3},{195,3},{200,3},{207,3},{209,3},{219,3},{225,5},{231,3},{233,3},{240,3},{243,3},{252,3},{260,3},{261,3},{264,3},{267,3},{269,3},{278,3},{282,3},{291,3},{300,3},{302,3},{318,3},{321,3},{326,3},{327,3},{329,3},{333,3},{341,3},{344,3},{348,3},{350,3},{351,3},{363,3},{365,3},{375,3},{381,3},{383,3},{384,3},{386,3},{404,3},{414,3},{419,3},{426,3},{428,6},{431,3},{432,3},{434,3},{437,3},{438,3},{447,3},{449,3},{450,3},{456,3},{480,3},{483,3},{491,3},{494,3},{497,3},{498,3},{504,3},{506,3},{507,5},{516,3},{518,3},{519,3},{533,3},{555,3},{557,3},{569,3},{570,3},{573,3},{575,3},{582,3},{588,3},{597,3},{603,3},{605,3},{606,3},{623,3},{627,3},{630,3},{636,3},{639,3},{641,3},{647,3},{651,3},{654,3},{659,3},{669,3},{678,3},{683,3},{684,3},{693,3},{698,3},{704,3},{717,3},{723,3},{726,3},{735,5},{737,3},{740,3},{744,3},{746,3},{753,3},{755,3},{758,3},{777,3},{780,3},{788,3},{792,3},{797,3},{800,3},{801,6},{806,3},{810,3},{812,3},{819,3},{834,3},{846,3},{854,3},{855,3},{857,3},{860,3},{861,3},{869,3},{870,3},{878,3},{879,3},{887,3},{893,3},{896,3},{905,3},{909,3},{911,3},{914,3},{924,3},{927,3},{944,3},{954,3},{956,3},{965,3},{971,3},{975,3},{984,3},{990,3}}
|