数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 蔡家雄

本原勾股方程

  [复制链接]
 楼主| 发表于 2024-2-17 20:19 | 显示全部楼层
本帖最后由 蔡家雄 于 2024-2-22 19:07 编辑

求:\(x^{131}+y^{137}+z^{139}=w^{149}\)

用:\(x^{2n+1}+y^{2n+2}=z^{2n+3}\)

用:\((2^{(n+1)(2n+2)})^{2n+1}+(2^{(n+1)(2n+1)})^{2n+2}=(2^{((n+1)(2n+1)(2n+2)+1)/(2n+3)})^{2n+3}\)

得:\((2^{(n+1)(2n+2)})^{2n}+(2^{(n+1)(2n+2)})^{2n}+(2^{(n+1)(2n+1)})^{2n+2}=(2^{((n+1)(2n+1)(2n+2)+1)/(2n+3)})^{2n+3}\)

得:\((2^{(n+1)(2n+2)})^{2n+1}+(2^{(n+1)(2n+1)})^{2n+1}+(2^{(n+1)(2n+1)})^{2n+1}=(2^{((n+1)(2n+1)(2n+2)+1)/(2n+3)})^{2n+3}\)


回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-2-20 21:03 | 显示全部楼层
求:\(x^{131}+y^{137}+z^{139}=w^{149}\)

用:\(2^0+2^0+2^1=2^2\),

得:\(2^{0+a}+2^{0+a}+2^{1+a}=2^{2+a}\)

解指数方程,
注:为了方便,同一字母k,代表:不同的数字,
0+a=131k ,  0+a=137k ,  1+a=139k ,  2+a=149k ,
0+a=131*137k ,               1+a=139k ,  2+a=149k ,

故,a=219994326 ,   

解:\((2^{1679346})^{131}+(2^{1605798})^{137}+(2^{1582693})^{139}=(2^{1476472})^{149}\)


回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-2-21 07:16 | 显示全部楼层
求:\(x^{131}+y^{137}+z^{139}=w^{149}\)

用:\(3^0+3^0+3^0=3^1\),

得:\(3^{0+a}+3^{0+a}+3^{0+a}=3^{1+a}\)

解指数方程,
注:为了方便,同一字母k,代表:不同的数字,
0+a=131*137*139*k ,    1+a=149*k ,   

故,a=366711051 ,

解:\((3^{2799321})^{131}+(3^{2676723})^{137}+(3^{2638209})^{139}=(3^{2461148})^{149}\)



回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-2-21 19:12 | 显示全部楼层
求:\(x^{7}+y^{11}+z^{13}+u^{17}+v^{19}=w^{23}\)

用:\(2^0+2^0+2^0+2^0+2^2=2^3\)

用:\(3^0+3^0+3^0+3^1+3^1=3^2\)

用:\(5^0+5^0+5^0+5^0+5^0=5^1\)
回复 支持 反对

使用道具 举报

发表于 2024-2-21 19:40 | 显示全部楼层
\[\left(3^{5848}\right)^{19}+\left(3^{6536}\right)^{17}+\left(3^{8547}\right)^{13}+\left(3^{10101}\right)^{11}+\left(3^{15873}\right)^7=\left(3^{4831}\right)^{23}\]

评分

参与人数 1威望 +20 收起 理由
cz1 + 20 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-2-21 20:45 | 显示全部楼层
求:\(x^{7}+y^{11}+z^{13}+u^{17}+v^{19}=w^{23}\)

解:\((5^{969969})^{7}+(5^{617253})^{11}+(5^{522291})^{13}+(5^{399399})^{17}+(5^{357357})^{19}=(5^{295208})^{23}\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-2-22 20:59 | 显示全部楼层
求:\(x^{131}+y^{137}+z^{139}=w^{149}\)

用:\((2^{(n+1)(2n+2)})^{2n+1}+(2^{(n+1)(2n+1)})^{2n+2}=(2^{((n+1)(2n+1)(2n+2)+1)/(2n+3)})^{2n+3}\)

得:\((2^{(n+1)(2n+2)})^{2n+1}+(2^{(n+1)(2n+1)})^{2n+1}+(2^{(n+1)(2n+1)})^{2n+1}=(2^{((n+1)(2n+1)(2n+2)+1)/(2n+3)})^{2n+3}\)

设:2n+1=131*137*139*k , 且 (2+131*137*139*k) 能被 149 整除,

得:2n+1=361721785 , 2n+3=361721787 , n+1=180860893 ,

解:\((2^{180860893*361721786})^{361721785}+(2^{180860893*361721785})^{361721785}+(2^{180860893*361721785})^{361721785}\)

\[=(2^{(180860893*361721785*361721786+1)/361721787})^{361721787}\]

即:\((2^{180860893*361721786*2761235})^{131}+(2^{180860893*361721785*2640305})^{137}+(2^{180860893*361721785*2602315})^{139}\)

\[=(2^{65421324871793113*2427663})^{149}\]


回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-2-24 13:58 | 显示全部楼层
求:\(x^{14}+y^{52}=z^{23}\) 易解,可以三项的底数都是2,

但,\(x^{14}+y^{23}=z^{52}\) 难解,不可能三项的底数都是2,

用:\(x^{14}+y^{46}=z^{52}\) ,

用:\(15^2+20^2=5^4\) ,

用:\((2^{0+a}*3^{1+b}*5^{1+c})^{2}+(2^{2+a}*3^{0+b}*5^{1+c})^{2}=(2^{0+a}*3^{0+b}*5^{4+c})^{2}\)

解指数方程,
注:为了方便,同一字母k,代表:不同的数字,
0+a=7k ,         1+b=7k ,          1+c=7k ,  
2+a=23k ,       0+b=23k ,        1+c=23k ,  
0+a=26k ,       0+b=26k ,        4+c=26k ,  
0+a=182k ,     0+b=598k ,      1+c=161k ,  
2+a=23k ,       1+b=7k ,          4+c=26k ,  

故,a=182 ,     b=1196 ,       c=2414 ,  

解:\((2^{182}*3^{1197}*5^{2415})^{2}+(2^{184}*3^{1196}*5^{2415})^{2}=(2^{182}*3^{1196}*5^{2418})^{2}\)

即:\((2^{26}*3^{171}*5^{345})^{14}+(2^{8}*3^{52}*5^{105})^{46}=(2^{7}*3^{46}*5^{93})^{52}\)


回复 支持 反对

使用道具 举报

发表于 2024-2-25 10:11 | 显示全部楼层
求:\(x^{314}+y^{159}=z^{314159}\)
回复 支持 反对

使用道具 举报

发表于 2024-2-25 10:52 | 显示全部楼层
\[(2^{24269283})^{314}+(2^{47928018})^{159}=(2^{24257})^{314159}\]

点评

漂亮  发表于 2024-2-25 18:38

评分

参与人数 1威望 +20 收起 理由
cz1 + 20 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-30 16:01 , Processed in 0.081582 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表