|
本帖最后由 朱明君 于 2023-12-31 12:49 编辑
\(设x^a+y^b=z^c{,}\ \ 其中x{,}y{,}z{,}a{,}b{,}c均为正整数,\)
一,\(\frac{\ nabc}{\ a}=m{,}\ \ \ \frac{nabc}{\ b}=k{,}\ \ \ \ c+nabc=dv{,}\)
二,\(\frac{\ nab}{\ a}=m{,}\ \ \ \frac{nab}{\ b}=k{,}\ \ \ \ c+nab=dv{,}\)
\(则\left( xz^m\right)^a+\left( yz^k\right)^b=\left( z^d\right)^v\)
\(实例\)
\(2^3+1^4=3^2\)
\(一,3\times4\times2=12{,}\)\(\ \ \ \ \ \ \left( 2\times3^4\right)^3+\left( 1\times3^3\right)^4=\left( 3^2\right)^7\)
\(二,3\times4\times2=24{,}\)\(\ \ \ \ \ \ \left( 2\times3^8\right)^3+\left( 1\times3^6\right)^4=\left( 3^2\right)^{13}\)
\(三,2\left( 3\times4\times2\right)=48{,}\)\(\ \ \ \ \ \ \left( 2\times3^{16}\right)^3+\left( 1\times3^{12}\right)^4=\left( 3^2\right)^{25}=\left( 3^{10}\right)^5\)
|
|