|

楼主 |
发表于 2025-3-2 22:01
|
显示全部楼层
求 \(x^2 - ((2n+1)^2+4)*y^2=1\) 的最小解
则 \(x=2*((2n+1)^2+4)*(2n^2+2n+1)^2 -1\) ,
\(y=(4n+2)*(n^2+(n+1)^2)*(n^2+(n+1)^2+1)\) .
求 \(x^2 - ((2n+1)^2+4)*y^2= -1\) 的最小解
则 \(x=(2n+1)*((2n+1)^2+3)/2\) , \(y=((2n+1)^2+1)/2\) .
求 \(x^2 - ((2n+1)^2+4)*y^2=±((2n+1)^2+4)\) 的最小解
\((2n+1)^2+4=5, 13, 29, 53, 85, 125, 173, 229, 293, 365, ..... \)
(5 , [5 , 2] , [20 , 9])
(13 , [65 , 18] , [2340 , 649])
(29 , [377 , 70] , [52780 , 9801])
(53 , [1325 , 182] , [482300 , 66249])
(85 , [3485 , 378] , [2634660 , 285769])
(125 , [7625 , 682] , [10400500 , 930249])
(173 , [14705 , 1118] , [32880380 , 2499849])
(229 , [25877 , 1710] , [88499340 , 5848201])
(293 , [42485 , 2482] , [210895540 , 12320649])
(365 , [66065 , 3458] , [456905540 , 23915529])
求 \(x^2 - ((2n+1)^2+4)*y^2=((2n+1)^2+4)\) 的最小解,
则 \(x=(n^2+(n+1)^2)*((2n+1)^2+4)\) , \(y=2*((n+1)(n^2+(n+1)^2) - n^2)\) .
求 \(x^2 - ((2n+1)^2+4)*y^2= - ((2n+1)^2+4)\) 的最小解,
则 \(x=2*(n^2+(n+1)^2)*((2n+1)^2+4)*(2*((n+1)(n^2+(n+1)^2) - n^2))\) ,
\(y=(n^2+(n+1)^2)*((2n+1)^2+4)*((2n+1)^2+1) -1\) .
|
|