|

楼主 |
发表于 2024-4-24 08:55
|
显示全部楼层
\(\displaystyle\bigcap_{n=1}^\infty A_n\) 是以\(A_1,A_2,A_3,\ldots\)的公共成员为其元素的集合。既然
\(k\not\in A_k,\;\;k\) 就不是 \(A_1,A_2, A_3,\ldots\)的公共成员。即 \(k\not\in\displaystyle\bigcap_{n=1}^\infty A_n\).
所以\(\displaystyle\lim_{n\to\infty}A_n=\bigcap_{n=1}^\infty A_n\)没有成员。
我现在算是明白了,应该及时事通告大家春老痴病情恶化:
春老痴自知无法反驳上述简单论说的每个细节,他的一再扑腾不过是
他感情上无法接受他已痴呆的事实。
|
|