数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{只有孬种不知道}\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\)

[复制链接]
发表于 2024-7-6 10:45 | 显示全部楼层
elim 发表于 2024-7-6 10:44
主贴的证明不需要\(\mathbb{N}\)不包括极限基数的假定.所以这个证明的正确性是绝对的.孬种无法具体指出任 ...


elim的定理【 \(\forall B\subseteq\mathbb{N}\implies B\cap\displaystyle\bigcup_{n=1}A_n^c=B\)】及其证明都是错误的!
       因为你\(\forall m\)中m的取值范围的认知错误,导致\(\forall B∈N\nRightarrow B\displaystyle\bigcup_{m=1}^∞ A_m^c=B\)!由于在Cantor实数理论中只有“有穷基数”的概念,现行教科书称〖有限集的基数叫自然数〗,(参见余元希著《初等代数研究》上册P4定义1)所以我们有理由认为Cantor的〖有穷基数的无穷序列1,2,…,\(\nu\),……〗就是自然数列或正整数序列。其中\(\nu=\displaystyle\lim_{k→∞}k\)(参见Cantor著《超穷数理论基础》P75页第8行)。很明显在你的认知里\(\forall m\)中m∈\(\{1,2,……,\nu\}\),但\(m\notin\{\nu+1,\nu+2,……\}\)。否则你得不出【无穷交就是一种骤变】的结论。也因如此你的【\(\mathbb{N}^+=\displaystyle\bigcup_{m=1}^∞ A_m^c\)】不成立,成立的只是\(\displaystyle\bigcup_{m=1}^∞ A_m^c\subset\mathbb{N}\),所以虽然你的谓词演译没有错,但你的演译结果【\(\mathbb{N}^+=\displaystyle\bigcup_{m=1}^∞ A_m^c\)】却是错误的!另外,你的证明是典型的循环论证。至于你认不认同我的意见都不重要,只要你不用这此歪理来进攻我、辱骂我,你的对错与我何干?
回复 支持 反对

使用道具 举报

发表于 2024-7-6 17:28 | 显示全部楼层
elim 发表于 2024-7-6 14:21
主贴的证明不需要\(\mathbb{N}\)不包括极限基数的假定.所以这个证明的正确性是绝对的.孬种无法具体指出任 ...


       elim辩称【主贴的证明不需要N不包括极限基数的假定.所以这个证明的正确性是绝对的.孬种无法具体指出任何毛病】?
       春风晚霞答:因为自然数集就是『有穷基数的无穷序列所成的集合\(\{1,2,…,\nu,……\}\)』,而你\(\displaystyle\bigcup_{m=1}^∞A_m^c\cap\{\nu+1,\nu+2,…\}=\phi\)。所以当你\(\forall B\subset\{\nu+1,\nu+2,…\}\)时,由\(B\subseteq\mathbb{N}\nRightarrow B\cap\displaystyle\bigcup_{m=1}^{\nu}A_m^c=B\) ,所以\(\color{red}{你定理是绝对错误的}\),你证明的第一步中\(\because\quad\forall m∈N\)与笫二步的\(\therefore\quad\forall m∈N\)表现雷同,确属典型的循环论证。因而也是绝对错误的!

      elim问【什么是康托的有穷基数,它跟皮亚诺意义上的自然数是什么关系】?
       春风晚霞答:康托尔的有穷基数,就是余元希先生所的〖有限集的基数〗,康托尔有穷基数构成规则为\(\overline{\overline{E_\nu}}=\overline{\overline{E_{\nu-1}}}+1\),其功効与皮亚诺公理笫二条相同。Cantor的有穷基数理论发表于1897年晚皮亚诺公理发表(1889年),所以康托尔自认为他的有穷基数理论比皮亚诺公理更直接有效。

       elim问【什么是\( 这里的序列{k}按极限定义为什么收敛到N元还是哪里?如果lim∞→∞k=vlim∞→∞k=v那么为什么k无限增大会刹车在vv这里为极限,难道vv没有后继了?其实集列的无穷并、交归根到底与极限没有关系.因为极限集的计算还是得归结为基合的并,交等集合本原运算。】
       春风晚霞答:Cantor有穷基数的无穷序列表示自然数集\(E=\{1,2,3,…\nu(=\displaystyle\lim_{k→∞}k\}\cup\{\nu+1,\nu+2,\nu+3,…\}\),这时\(E_\nu=\{1,2,3,…∞\}\),\(\overline{\overline{E_\nu}}=\aleph_0\),所以正整数\(\mathbb{N}=\mathbb{N}_∞\cup\{\nu+1,\nu+2,…\}\),所以你的\(\displaystyle\bigcup_{m=1}^∞ A_m^c\subset\mathbb{N}\),所以\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,……\}≠\phi\)!

        elim认为【其实其实无穷集列的并、交归根到底与极限没有关系.因为极限集的计算还是得归结为集合的并,交等本原运算.
谢谢孬种高调来此丢人现眼!孬种知道它种孬,不知道其种这么孬!】
       春风晚霞答:老夫认为【无穷集列的并、交归根到底与极限没有关系.因为极限集的计算还是得归结为集合的并,交等本原运算】,这又是elim为其【无穷交就是一种骤变】招魂,要是无穷交与极限没有关系,那Cantor、周民强以及你那天罗列的那些书的作者还弄个极限集干什么?难道他们也是【孬种高调来此丢人现眼】?难道他们也【孬种知道它种孬,不知道其种这么孬】?再者难道用交并运算的结合律、分配律、吸收律计算单调集合列的极限集就不是集合并交的本原运算了么?人可以无术,但不可以无德,你以为通过你的谩骂和要流氓就能把单调递减集合列的极限集骂成空集了么?真是无耻下流到了极限!
回复 支持 反对

使用道具 举报

发表于 2024-7-6 17:56 | 显示全部楼层
elim 发表于 2024-7-6 17:30
周民强不知道孬种算不出集合交,蠢疯不知道自己有多孬。


周民强和那些写《集合论》的学者也是,明知道孬种算不出集合交,还写那么多集合论的交并补运算干什么?以致于野种的“臭便”得不到认可!
回复 支持 反对

使用道具 举报

发表于 2024-7-7 17:01 | 显示全部楼层
elim 发表于 2024-7-6 22:53
周民强不知道孬种算不出集合交,孬种蠢疯不知自己种竟然这么孬。
无论蠢疯怎么扯,它仍是个算不出交集的孬 ...


       elim畜生及落水狗婊子:你们两个畜生沆瀣一气,狼狈为奸。仗着你们无耻下流、死缠烂打的德性与无知无畏的泼皮精神。根据自己对集合论、《实函数论》的认知和篡对老子实施人身攻击。本帖是根据周民强《实变数论》P9页定义1.8写成。由于我与elim畜生和落水狗婊子的结果不同,你两爷子一个骂老子“孬种”,永远学不会集合论,一个骂老子是“鸡婊”。妈的个巴子,好像以为你骂得越凶,你们的骚整结果就越正确?!
       根据周民强《实变函数论》P9定义1.8〖\(\{A_k\}\)是一个集合列,若\(A_1\supset A_2\supset\)…\(\supset A_k\)…,则称此集列为递减集合列,此时我们称其交集\(\displaystyle\bigcap_{k=1}^∞ A_k\)为集合列\(\{A_k\}\)的极限集,记为\(\displaystyle\lim_{k→∞} A_k\);若\(\{A_k\}\)满足\(A_1\subset A_2\subset\)…\(\subset A_k\)…,则称\(\{A_k\}\)为递增集合列,此时我们称其并集\(\displaystyle\bigcup_{k=1}^∞ A_k\)为集合列\(\{A_k\}\)的极限集,记为\(\displaystyle\lim_{k→∞} A_k\)〗
       对于elim所给集合列\(\{A_k=\{k+1,k+2,k+3,…\}\}\)单减,而集合列\(\{A_k^c=\{1,2,…k\}\}\)单增,所以\(\displaystyle\bigcup_{k=1}^∞ A_k^c=\)\(\displaystyle\bigcap_{k=1}^∞ A_k=\)\(\displaystyle\lim_{k→∞} A_k=\)\(\displaystyle\lim_{k→∞}\{k+1,k+2,k+3,…\}\);由于\(\nu=\displaystyle\lim_{k→∞}k=\aleph_0\);凡学过《实变函数论》的网友都知道\(\nu=\overline{\overline{\displaystyle\bigcup_{k=1}^∞ A_k^c}}\)。在有穷基数的无穷序列:1,2,3 ,…\(\nu\),\(\nu+1\),\(\nu+2\)…中,\(\nu=\displaystyle\lim_{k→∞}k\)既表示它的大小,又表示它处在序列中的位置。
       elim畜生和落水狗婊子,你们如果还是人的话,你们觉得你仙算得的结果对吗?
回复 支持 反对

使用道具 举报

发表于 2024-7-7 20:35 | 显示全部楼层
elim 发表于 2024-7-7 20:32
民强不知道孬种算不出集合交,蠢疯不知道自己的种竟这么孬。
无论蠢疯怎么扯,它仍是个算不出交集的孬种。 ...


       elim畜生及落水狗婊子:你们两个畜生沆瀣一气,狼狈为奸。仗着你们无耻下流、死缠烂打的德性与无知无畏的泼皮精神。根据自己对集合论、《实函数论》的认知和篡对老子实施人身攻击。本帖是根据周民强《实变数论》P9页定义1.8写成。由于我与elim畜生和落水狗婊子的结果不同,你两爷子一个骂老子“孬种”,永远学不会集合论,一个骂老子是“鸡婊”。妈的个巴子,好像以为你骂得越凶,你们的骚整结果就越正确?!
       根据周民强《实变函数论》P9定义1.8〖\(\{A_k\}\)是一个集合列,若\(A_1\supset A_2\supset\)…\(\supset A_k\)…,则称此集列为递减集合列,此时我们称其交集\(\displaystyle\bigcap_{k=1}^∞ A_k\)为集合列\(\{A_k\}\)的极限集,记为\(\displaystyle\lim_{k→∞} A_k\);若\(\{A_k\}\)满足\(A_1\subset A_2\subset\)…\(\subset A_k\)…,则称\(\{A_k\}\)为递增集合列,此时我们称其并集\(\displaystyle\bigcup_{k=1}^∞ A_k\)为集合列\(\{A_k\}\)的极限集,记为\(\displaystyle\lim_{k→∞} A_k\)〗
       对于elim所给集合列\(\{A_k=\{k+1,k+2,k+3,…\}\}\)单减,而集合列\(\{A_k^c=\{1,2,…k\}\}\)单增,所以\(\displaystyle\bigcup_{k=1}^∞ A_k^c=\)\(\displaystyle\bigcap_{k=1}^∞ A_k=\)\(\displaystyle\lim_{k→∞} A_k=\)\(\displaystyle\lim_{k→∞}\{k+1,k+2,k+3,…\}\);由于\(\nu=\displaystyle\lim_{k→∞}k=\aleph_0\);凡学过《实变函数论》的网友都知道\(\nu=\overline{\overline{\displaystyle\bigcup_{k=1}^∞ A_k^c}}\)。在有穷基数的无穷序列:1,2,3 ,…\(\nu\),\(\nu+1\),\(\nu+2\)…中,\(\nu=\displaystyle\lim_{k→∞}k\)既表示它的大小,又表示它处在序列中的位置。
       elim畜生和落水狗婊子,你们如果还是人的话,你们觉得你仙算得的结果对吗?
回复 支持 反对

使用道具 举报

发表于 2024-7-9 14:13 | 显示全部楼层

       elim真不要脸,更不是男人。仅就无穷递减集合列的极限问题究竟是现行教科书错了?周民强定义1.8错了?cantor超穷数理论错了?春风晚霞应用这些基础知识错了?你说老子【反数学的谬论邪说千头万绪,归根到底就是一句话,种太孬.其帖子又臭又长, 行文低俗丑陋, 计算三步两错, 概念混乱如麻, 逻辑逆悖倒错,结论虚无荒诞,. 读它纯属浪费生命. 孬种成了万人嫌】有何凭据?短就不荒诞?你的帖子短倒是短,无论从论点、论据、论证有个一处对吗?如:为证\(N_∞=\phi\),elim构造了单减集合列\(\{A_k=\{m∈\mathbb{N}^+:m>k\}\}(k∈\mathbb{N}^+\)),
并给出了自以很“严谨”证明。其证明如下
【证明:令 \(A_k=\{m∈\mathbb{N}^+:m>k\}(k∈\mathbb{N}^+\)),则\(k\notin A_k,因而k\notin\displaystyle\bigcap_{m=1}^∞ A_m=\displaystyle\lim_{n→∞}A_n\). 因k任意,\(\displaystyle\lim_{n→∞}A_n=\phi\)!】易证集合列\(\{A_k\}\)单减,集合列\(\{A_k^c\}\)单增,所以周老先生的定义1.8有\(\displaystyle\lim_{k→∞}A_k=\)\(\displaystyle\lim_{n→∞}\{k+1,k+2,k+,…\}≠\phi\),\(\displaystyle\bigcup_{k=1}^∞ A_k^c=\)\(\displaystyle\lim_{k→∞}A_k^c≠\phi\)。面对这种矛盾,elim坚持认为自已没有错。那么谁错了呢?我们不妨设\(\nu=\displaystyle\lim_{k→∞}k\),无论根据Peano Axioms还是cantor的\(\overline{\overline{E_\nu}}=\overline{\overline{E_{\nu-1}}}+1,\nu\)都是一个逻辑确定的自然数这样便得到Cantor的〖有穷基数的无穷序列:1,2,…,\(\nu\),\(\nu\)+1,\(\nu+2\)……〗(参见康托著《超穷数理论基础》P75页第8行。)现行教科书称〖有限集的基数叫自然数〗(参见余元希等著《初等代数研究》上册P4页定义1)。所以\(N_{elim}\subset N_{cantor}=N\),所以elim认定\(\displaystyle\bigcap_{n→∞} A_n=\phi\)的始因。从这里我们可以看出elim的“骤变”确定是“臭便”。又因为\(N_{elim}\subset N_{cantor}=\mathbb{N}\),\(N_∞\subseteq N_{elim}^c\),所以e
氏坚持认为\(N_∞=\phi\),就是elim反对现行数学的铁证!elim你说老子【行文低俗丑陋, 计算三步两错, 概念混乱如麻, 逻辑逆悖倒错,结论虚无荒诞.】有何证据?!既然你觉得【读它纯属浪费生命】,我求乞过你读吗?你还通过80多个主题向我发动进攻?世上有只允许你胡说八道,而不允许我辩驳还击的事吗?你不是要清算吗?老子等着的!老子倒要看你能清算出个什么花样?老子还是那句话,讲理我陪,骂架我也陪!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-7-10 15:35 | 显示全部楼层
民强不知道孬种算不出集合交,蠢疯不知道自己的种竟这么孬。
无论蠢疯怎么扯,它仍是个算不出交集的孬种。蠢疯反数学是尽力了,
但很失败,很无奈,种太孬.....
本贴提供孬种从【蠢氏可达】到【非空亦空】反数学忙活的一个简捷清算.
【定理】\(\forall B\subseteq\mathbb{N}\,\big(B\cap\displaystyle\bigcup_{n\in\mathbb{N}} A_n^c=B\big)\)
【证明】\(\because\;\forall m\in\mathbb{N}\,\big(\{m\}\subset A_m^c\subset\displaystyle\bigcup_{n\in\mathbb{N}} A_n^c\big)\)
\(\therefore\;\forall m\in\mathbb{N}\,\big(\{m\}\cap\displaystyle\bigcup_{n\in\mathbb{N}} A_n^c=\{m\}\big)\)
\(\therefore\;\;\forall B\subseteq\mathbb{N}:\;B\cap\displaystyle\bigcup_{n\in\mathbb{N}} A_n^c=\big(\bigcup_{m\in B}\{m\}\big)\cap\bigcup_{n\in\mathbb{N}} A_n^c\)
\(\qquad\displaystyle=\bigcup_{m\in B}\big(\{m\}\cap\bigcup_{n\in\mathbb{N}} A_n^c\big)=\bigcup_{m\in B}\{m\}=B.\quad\square\)
【推论】在定理中取\(B=\mathbb{N}\) 即得 \(\color{red}{\displaystyle\bigcup_{n\in\mathbb{N}}A_n^c = \mathbb{N}}.\)
\(\qquad\quad\)对上式两边取补集得\(\color{red}{N_{\infty}:=\displaystyle\bigcap_{n\in\mathbb{N}}A_n = \varnothing}.\)
本定理指出:非空亦空是孬种的痴心妄想.
无论孬种咋样扯,它仍是个不懂集论的蠢东西


既然\(N_{\infty}=\phi\), 而孬种蠢疯又称 【\(\color{blue}{n\to\infty}\)时】等价于【\(\color{blue}{n\in N_{\infty}}\)时】,
孬种的【\(n\to\infty\)时】就是猴年马月,毫无意义。
所以\(\displaystyle\lim_{n\to\infty}a_n=a\) 不能拆分为有独立意义的子语句的复合。特别地,
【当\(n\to\infty\)时,\(a_n=a\)】是谬论, 与【\(\displaystyle\lim_{n\to\infty}a_n=a\)】不仅不等价,
还孬变成庸俗荒谬, 四则运算缺除法,彻底破产的蠢氏可达!


无赖蠢疯顽瞎反数学的谬论邪说千头万绪,归根到底就是一句话,种太孬.
其帖子又臭又长, 行文丑陋不堪, 计算三步两错, 概念乱作一团, 逻辑逆悖倒错,
结论荒诞飘渺,. 读它纯属浪费生命. 人孬成这样报应就来:孬种成了孬种糟
回复 支持 反对

使用道具 举报

发表于 2024-7-13 17:41 | 显示全部楼层

回elim先生。最近你发表的两大证明\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\} =\phi\)\(\color{red}{都是错误的!}\)无论是利用周民强《实变函数论》第一章定义1.8还是定义1.9求集合列的极限集,结果都只与待求极限集的集列通项有关,与其它手段无关。
1、先生与你的舔狗根据周翁《实变函数论》P9页例5\(\displaystyle\lim_{n \to \infty}[n,∞)=\phi\)\(\Rightarrow\)\(\displaystyle\lim_{n→∞}\{k+1,k+2,…\}\color{red}{\subseteq}\)\(\displaystyle\lim_{n \to \infty}[n,∞)=\phi\),事实上\(\forall\displaystyle\lim_{n \to \infty}(n+j)\; \;j∈N\)\(∈\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}\)\(\nRightarrow\)\(\displaystyle\lim_{n \to \infty}(n+j)∈[n,∞)\),从康托尔有穷基数的无穷序列知,\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\subset\)(∞,2∞),所以用\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}\subseteq [n,∞)\color{red}{是绝对错误的!}\)
2、elim在主题《\(\underset{n\to\infty}{\overline{\lim}}\{n+1,n+2,…\}=\phi\)》主题主帖根据周民强《实变函数论》P9页定义1.9“证明”
\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}=\phi\),2楼又特别指出【当集列\(\{A_n\}\)单降时,\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcap_{n =1}^∞ A_n\)(也就同页定义1.8),看来elim并不反对用周氏定义1.8证得\(\displaystyle\bigcap_{n=1}^\infty A_n=\{k+1,k+2,…\}\)而是反对\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)!确定\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}\)空还是不空的关键在于\(\nu=\displaystyle\lim_{n \to \infty}n\)是否存在?
若\(\nu\)不存在,那么它的前趋\(\nu\)-1亦不存在;\(\nu\)-1的前趋\(\nu\)-2亦存在……直至3、2、1这些常见的自然数也不存在。于是自然数集\(N=\phi\)这显然有背常理,故此\(\nu\)是客观存在的。由\(\nu\)的存在性,它的后继\(\nu\)+1相应存在,\(\nu\)+1的后继\(\nu\)+2也相继存在……直至2\(\nu\)也相继存在,所以数集(∞,2∞)
≠\(\phi\)
所以\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)
另外,elim先生在该主帖下elim在主题《\(\underset{n\to\infty}{\overline{\lim}}\{n+1,n+2,…\}=\phi\)》主题下【取 \(A_n=\{n+1,n+2,\ldots\}\;(n\in\mathbb{N})\)
因为对每个\(m\in\mathbb{N},\;m\not\in A_n\,(n\ge m)\), 即属于无穷多个\(A_n\)的自然数不存在,即 \(\underset{n\to\infty}{\underline{\lim}}A_n\subseteq\underset{n\to\infty}{\overline{\lim}} \{n+1,n+2,\ldots\}=\varnothing.\)
所以 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}=\varnothing.\)】的这段演译仍然是【无穷交就是一种骤变】的再版。其\(\color{red}{错误原因}\)依然是无视\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)这一事实。由于集合列列\(\{A_k\}\)单调递减,所以集合列\(\{A_k^c\}\)单调递增。根据周氏定义1.8,我们立得\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\{k+1,k+2,…\}^c\);所以\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)!
我真不明白,为什么我步步依据《实变函数论》或集合论运算规律证明得\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)在你眼里却成了“反对数学,反对周民强《实变函数论》的孬种或种孬”?elim先生你每天在10多个点名骂我的主题下发帖骂我,难道还下允许我还击吗?这样还有天理吗?是的我在每天回你的上百个帖子里也骂了你,你就因此感到很是不爽。那你天天骂我,我会感到很爽吗?当然你比那个落水狗婊子文明得多,虽然须眉之气少了一些,但毕竟还算得业界翘楚嘛!
回复 支持 反对

使用道具 举报

发表于 2024-7-13 22:59 | 显示全部楼层
根据e氏所给集合的通项公式虽有
\(\forall m∈N\)都有m\(\notin A_m\),但\(\forall j∈N且j>m,亦恒有j∈A_m\),也就是集合\(A_m\)中虽缺小于或等于m的数,但\(A_m\)仍是自然数集N的无限真子集!同理每个\(A_n\)都是自然数集N的无限真子集。所以\(N_∞≠\phi\),真是【这么简单的事情忙活大半年还闹不明白】.非elim莫属,臆想【周民强或许能帮到它.岂料:民强不知道孬种不会算集合交】,e氏【不知道其种竟然会这么孬】,故此无论孬种咋样鬼哭狼嚎\(N_∞=\phi\),他仍难圆【无穷交就是一种骤变】的谎话!孬东西越来越德不配位。帖子又臭又短, 文若泼妇骂街,无半点学术修养! 【计算三步两错, 概念乱作一团,逻辑悖谬颠倒, 结论虚无荒唐. 扯谎滚屁不绝, 读来当即称孬】!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-7-13 23:02 | 显示全部楼层
\(m\not\in A_m\,(\forall m\in\mathbb{N})\). 故没有自然数属于每个\(A_n\)即\(N_{\infty}=\varnothing\).
这么简单的事情忙活大半年还闹不明白.非孬种顽瞎莫属.

无论孬种咋样啼\(\ne\varnothing\)之猿声,他还是个算不出\(N_{\infty}\)的蠢东西.


蠢疯越来越般配以下描述:
帖子又臭又长, 行文丑陋不堪, 计算三步两错, 概念乱作一团,
逻辑悖谬颠倒, 结论虚无荒唐. 扯谎滚屁不绝, 读来当即穿帮!


没有人会帮蠢疯寻找其算错极限/交集的详细原因,但不外乎:
1)种太孬;2)反集论恶搞.

民强不知道孬种不会算集合交,蠢疯不知道其种竟然会这么孬.

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-10 15:32 , Processed in 0.086372 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表