数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

孬种搅局08\(\Huge\color{green}{\mathbb{N}\textbf{没有无穷元}}\)

[复制链接]
发表于 2025-5-26 19:53 | 显示全部楼层

       因为我们多次证明\(v=\displaystyle\lim_{n \to \infty}n\)是一个确定的自然数,所以\(v\)的前趋\((v-1)\)和后继\((v+1)\)都是自然数(皮亚诺公理第二条)。另一方面如果仅从取值看\((v-1)=\)\(\infty-1=\infty\),\((v+1)=\infty+1=\infty\).所以\(\displaystyle\lim_{n \to \infty}n=\infty=\infty\pm 1\)。同理我们还可证得\(\displaystyle\lim_{n \to \infty}n=\infty=\infty\pm j\)(j为有限自然数)!
       elim先生认为\(\displaystyle\lim_{n \to \infty}n\)反皮亚诺公理,这是故意装疯卖傻。我相信elim先生还是读得懂“每个确定的自然数\(a\),都有确定的后继\(a'\),\(a'\)也是自然数!所以\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm 1\)并不反皮亚诺公理,真正反皮亚诺公理的是elim先生的“底层逻辑”!
回复 支持 反对

使用道具 举报

发表于 2025-5-27 04:30 | 显示全部楼层

       因为\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(否则\(\mathbb{N}=\phi\))!所以\(v\)是一个确定的自然数,所以\(v\)的前趋\((v-1)\)和\(v\)的后继\((v+1)\)也是自然数(皮亚诺公理第二条)。另一方面如果\(\color{red}{仅从取值看}\)\((v-1)=\)\(\infty-1=\infty\),\((v+1)\)\(=\infty+1=\infty\).所以\(\displaystyle\lim_{n \to \infty}n=\infty=\infty\pm 1\)并不违反皮亚诺公理!根据皮亚诺公理我们还可从\(\color{red}{取值上}\)证得\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm j\)(j为有限自然数)!
       elim先生认为\(\displaystyle\lim_{n \to \infty}n\)反皮亚诺公理,这是故意装疯卖傻。我相信elim先生还是读得懂〖每个\(\color{red}{确定}\)的自然数\(a\),都有\(\color{red}{确定}\)的后继\(a'\),\(a'\)也是自然数〗的!
       然而\(\color{red}{从序数}\)的角度看\(v-1\)、\(v\)、\(v+1\)又是三个不同的\(\infty\)。皮亚诺公理是从基数和序数的一致性来陈述自然数的。elim先生割裂自然数基数和序数的一致性认为【\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm 1\)反皮亚诺公理】是极其错误的。其实,真正反皮亚诺公理的是elim先生你自己!
回复 支持 反对

使用道具 举报

发表于 2025-5-27 15:58 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
         因为在自然数理论中,\(v\displaystyle\lim_{n \to \infty}n\)是一个确切的数,所以\(v减有限数k\)也是确切的数。因此有限数k是\(v\)的\(v-k\)代前趋,即\(v-(v-k)=k\)!
回复 支持 反对

使用道具 举报

发表于 2025-5-27 16:48 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
         因为在自然数理论中,数\(v=\displaystyle\lim_{n \to \infty}n\)“既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体”(康托尔语)。所以\(v减有限数k\)也是确切的计数。因此有限数k是\(v\)的\(v-k\)代前趋,即\(v-(v-k)=k\)!所以\(v\notin\mathbb{N}\)时、\(v-(v-k)\)\(\notin\mathbb{N}\),当k=2时,\(v-(v-2)\notin\mathbb{N}\)即\(2\notin\mathbb{N}\)!
回复 支持 反对

使用道具 举报

发表于 2025-5-27 17:25 | 显示全部楼层
elim 发表于 2025-5-27 16:49
孬种被迫承认教科书 \(\displaystyle\lim_{n\to\infty}n=\infty=\infty\pm 1\)
即\(\color{red}{\displ ...


       因为\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(否则\(\mathbb{N}=\phi\))!所以\(v\)是一个确定的自然数,所以\(v\)的前趋\((v-1)\)和\(v\)的后继\((v+1)\)也是自然数(皮亚诺公理第二条)。另一方面如果\(\color{red}{仅从取值看}\)\((v-1)=\)\(\infty-1=\infty\),\((v+1)\)\(=\infty+1=\infty\).所以\(\displaystyle\lim_{n \to \infty}n=\infty=\infty\pm 1\)并不违反皮亚诺公理!根据皮亚诺公理我们还可从\(\color{red}{取值上}\)证得\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm j\)(j为有限自然数)!
       elim先生认为\(\displaystyle\lim_{n \to \infty}n\)反皮亚诺公理,这是故意装疯卖傻。我相信elim先生还是读得懂〖每个\(\color{red}{确定}\)的自然数\(a\),都有\(\color{red}{确定}\)的后继\(a'\),\(a'\)也是自然数〗的!
       然而\(\color{red}{从序数}\)的角度看\(v-1\)、\(v\)、\(v+1\)又是三个不同的\(\infty\)。皮亚诺公理是从基数和序数的一致性来陈述自然数的。elim先生割裂自然数基数和序数的一致性,认为【\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm 1\)反皮亚诺公理】是极其错误的。其实,真正反皮亚诺公理的是elim先生你自己!
回复 支持 反对

使用道具 举报

发表于 2025-5-27 17:27 | 显示全部楼层
elim 发表于 2025-5-27 17:25
孬种被迫承认教科书 \(\displaystyle\lim_{n\to\infty}n=\infty=\infty\pm 1\)
即\(\color{red}{\displ ...


       因为\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(否则\(\mathbb{N}=\phi\))!所以\(v\)是一个确定的自然数,所以\(v\)的前趋\((v-1)\)和\(v\)的后继\((v+1)\)也是自然数(皮亚诺公理第二条)。另一方面如果\(\color{red}{仅从取值看}\)\((v-1)=\)\(\infty-1=\infty\),\((v+1)\)\(=\infty+1=\infty\).所以\(\displaystyle\lim_{n \to \infty}n=\infty=\infty\pm 1\)并不违反皮亚诺公理!根据皮亚诺公理我们还可从\(\color{red}{取值上}\)证得\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm j\)(j为有限自然数)!
       elim先生认为\(\displaystyle\lim_{n \to \infty}n\)反皮亚诺公理,这是故意装疯卖傻。我相信elim先生还是读得懂〖每个\(\color{red}{确定}\)的自然数\(a\),都有\(\color{red}{确定}\)的后继\(a'\),\(a'\)也是自然数〗的!
       然而\(\color{red}{从序数}\)的角度看\(v-1\)、\(v\)、\(v+1\)又是三个不同的\(\infty\)。皮亚诺公理是从基数和序数的一致性来陈述自然数的。elim先生割裂自然数基数和序数的一致性,认为【\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm 1\)反皮亚诺公理】是极其错误的。其实,真正反皮亚诺公理的是elim先生你自己!
回复 支持 反对

使用道具 举报

发表于 2025-5-27 21:29 | 显示全部楼层

       因为\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(否则\(\mathbb{N}=\phi\))!所以\(v\)是一个确定的自然数,所以\(v\)的前趋\((v-1)\)和\(v\)的后继\((v+1)\)也是自然数(皮亚诺公理第二条)。另一方面如果\(\color{red}{仅从取值看}\)\((v-1)=\)\(\infty-1=\infty\),\((v+1)\)\(=\infty+1=\infty\).所以\(\displaystyle\lim_{n \to \infty}n=\infty=\infty\pm 1\)并不违反皮亚诺公理!根据皮亚诺公理我们还可从\(\color{red}{取值上}\)证得\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm j\)(j为有限自然数)!
       elim先生认为\(\displaystyle\lim_{n \to \infty}n\)反皮亚诺公理,这是故意装疯卖傻。我相信elim先生还是读得懂〖每个\(\color{red}{确定}\)的自然数\(a\),都有\(\color{red}{确定}\)的后继\(a'\),\(a'\)也是自然数〗的!
       然而\(\color{red}{从序数}\)的角度看\(v-1\)、\(v\)、\(v+1\)又是三个不同的\(\infty\)。皮亚诺公理是从基数和序数的一致性来陈述自然数的。elim先生割裂自然数基数和序数的一致性认为【\(\displaystyle\lim_{n \to \infty}n\)\(=\infty=\infty\pm 1\)反皮亚诺公理】是极其错误的。其实,真正反皮亚诺公理的是elim先生你自己!
回复 支持 反对

使用道具 举报

发表于 2025-5-27 22:01 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
         因为在自然数理论中,\(v\displaystyle\lim_{n \to \infty}n\)是一个确切的数,所以\(v-有限数k\)也是确切的数。因此有限数k是\(v\)的\(v-k\)代前趋,即\(v-(v-k)=k\)!
回复 支持 反对

使用道具 举报

发表于 2025-5-28 00:09 | 显示全部楼层
《数学分析》中确实有\(\infty=\infty\pm j\),但自然数理论(皮亚诺公理,康托尔正整生成法则、冯\(\cdot\)诺依曼自然数构成法)的\(v-2=\displaystyle\lim_{n \to \infty}n-2=\infty-2\)、\(v-1=\)\(\displaystyle\lim_{n \to \infty}n-1=\infty-1\)、\(v=\displaystyle\lim_{n \to \infty}n\)\(=\infty\)它们都是自然数(否则自然数集\(\mathbb{N}=\phi\))!并且\(\infty-2<\infty-1<\infty\)。这是因为自然数理论中的\(\infty\)是基数和序数(即量值与序号)的统一表示,是一个确定的自然数。而《数学分析》的\(\infty\)是集合。所以【推论】\(\displaystyle\lim_{n \to \infty}n=\infty=\infty+1\)不是自然数是不严谨也不自洽的。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-5-29 04:31 | 显示全部楼层
春风晚霞 发表于 2025-5-24 16:36
elim,\(\displaystyle\lim_{n \to \infty}n\)的定义无需我再给出,任何一本《实变函数论》教科书中均有它 ...

孬种被迫承认教科书 \(\displaystyle\lim_{n\to\infty}n=\infty=\infty\pm 1\)
\(\color{red}{\displaystyle\lim_{n\to\infty}n}\) 前趋=后继反皮亚诺, 它不是自然数.
以上区区二行追使孬种重返臭长反数学驴滚:
蠢疯白痴真身被坐实,孬种船漏不打一处来
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-16 05:53 , Processed in 0.081166 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表