|
本帖最后由 春风晚霞 于 2025-7-16 13:46 编辑
①、什么是无穷大:
【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷记为\(\infty\)(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
②、\(\mathbb{ N }\)中\(v=\displaystyle\lim_{n \to \infty}n\)是客观存在的
根据\(\infty\)定义,对任间预先给定的无论怎样大的自然数\(n_e\in\mathbb{N}\),则自然数集\(\mathbb{ N }=\)\(\{n\le n_e\}\)\(\cup\{n>n_e\}\)\((n\in\mathbb{N}\),其中集合\(\{n\le n_e\}\)中每个自然数都是有限自然数,\(\{n>n_e\}\)每个自然数都是无穷自然数。
根据皮亚诺公理第二条:“每个自然数a都有一个唯一确定的后继数a'(或a+1),且a'也是自然数”,所以\(\{n>n_e\}\ne\phi\),事实上因为\(\{n>n_e\}=\{n_e+1, n_e+2, n_e+3,…,n_e+k,…\}\),所以\(\displaystyle\lim_{n \to \infty}\{n>n_e\}=\)\(\{n_e+1, n_e+2, n_e+3,…,n_e+k,…\)\(\displaystyle\lim_{n \to \infty} {n_e+n) \}\),所以\(\displaystyle\lim_{n \to \infty}( n_e+n) \in\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\in\mathbb{N}\).
|
|