|

楼主 |
发表于 2014-9-8 07:41
|
显示全部楼层
设正整数n,p为不大于√(n+8)的素数,1≤m≤n,若m≠0modp , (m+2)≠0modp,(m+6)≠0modp , (m+8)≠0modp,则m,(m+2),(m+6)和(m+8)这四个数都是素数,称为四生素数,或四胞胎素数。
满足条件m≠0modp , (m+2)≠0modp,(m+6)≠0modp , (m+8)≠0modp,即是对不大于√(n+8)的素数,去掉模2余0的一个同余类,去掉模3余0和1的两个同余类,去掉模5余0、3、4和2四个同余类,大于5小于√(n+8)的其它素数都去四个同余类。当素数大于7小于或等于√(n+8)时,去掉的同余类小于余下的同余类,所以,随着n的增大,四生素数波动地增多。所以,四生素数无穷多。
|
|