|

楼主 |
发表于 2015-10-15 20:59
|
显示全部楼层
本帖最后由 愚工688 于 2015-10-21 02:05 编辑
上面31楼讲了,用相对误差修正值 μ=.15496 通过Sp(m *)=Sp(m)/(1+μ) 计算式来计算300亿±30亿范围内的任意一个偶数的素对数量,得出的计算值的相对误差的绝对值,不会大于0.001。
实例计算如下:
G(27100000000) = 45300014 ,Sp( 27100000000 *)= 45275977.1 Δ≈ -0.00053062 ,
G(27100000002) = 67702239 ,Sp( 27100000002 *)= 67662432.5 Δ≈ -0.00058796 ,
G(27100000004) = 45822715 ,Sp( 27100000004 *)= 45802262 Δ≈ -0.00044635 ,
G(27100000004) = 45822715 ,Sp( 27100000006 *)= 34424746.4 Δ≈ -0.00058237 ,
上面一个数据打错了,更改如下:
G(27100000006) = 34444806,Sp( 27100000006 *)= 34424746.4 Δ≈ -0.00058237 ,
G(32800000000) = 55107617 ,Sp( 32800000000 *)= 55124575 Δ≈ 0.00030773 ,
G(32800000002) = 107459525 ,Sp( 32800000002 *)= 107492921.2 Δ≈ 0.00031078 ,
G(32800000004) = 40407177 ,Sp( 32800000004 *)= 40412850.6 Δ≈ 0.00014041 ,
G(32800000006) = 40692772 ,Sp( 32800000006 *)= 40708952.8 Δ≈ 0.00039763 ,
G(32999999990) = 58020735 ,Sp( 32999999990 *)= 58046534.9 Δ≈ 0.00044467 ,
G(32999999992) = 40524567 ,Sp( 32999999992 *)= 40545497.4 Δ≈ 0.00051649 ,
G(32999999994) = 88520176 ,Sp( 32999999994 *)= 88570346.9 Δ≈ 0.00056677 ,
G(32999999996) = 40522941 ,Sp( 32999999996 *)= 40538199.8 Δ≈ 0.00037655 ,
显然3组12个偶数的素对计算值的相对误差的绝对值全部小于0.001 ,预测正确。 |
|