数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 歌德三十年

[讨论]“马氏分流归纳法”之与数学归纳法

[复制链接]
 楼主| 发表于 2011-3-22 17:59 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

各位网友:
数学归纳法所根据的原理是自然数的一个最基本的性质---最小数原理.
(最小数原理)定理 任意一个非空集中,必有一个最小数.

设N是一个自然数的非空集.在N中任意取出一个数m.从1到m共有m个自然数,所以N中不超过m的数最多有m个.因为这是有限个数,所以其中有一个最小数.用k表示这个最小数.k对于N中不超过m的数来说是最小的,而N中其余的数都比m大.所以k就是N中的最小数.
证毕.
(数学归纳法原理)定理 设有一个与自然数n有关的命题.如果
1°当n=1时命题成立;
2°假定n=k时成立。则n=k+1时命题也成立;那么这个命题对于一切自然数n都成立.
证(反证法)略.
供大家参考.
 楼主| 发表于 2011-3-24 09:34 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

斥心有一只歌等无脸人:别再不懂装懂了,丢尽你八辈祖宗人了!!!
我文“2º-2.      若当      k=(2ij+i+j)∈{2ij+i+j/i,j∈N+}时 则有二假设推论
假设推论① 2ij+i+j>m>1 所假设的两个素数{1+2m}>3、
{3+2(k-m)}={3+2((2ij+i+j)-m)>3
证 :©数学中国 -- 数学中国 www.mathchina.com  mpd
由假设及最小奇素数为3的事实知:{1+2m}≥3,{3+2(k-m)}≥3
则k≥m≥1
当k=2ij+i+j时,由于{1+2k}={1+2(2ij+i+j)}={(2i+1)(2j+1)}
表不小于9的奇合数,而由假设知{1+2m}为素数
∴2ij+i+j≠m 再由上知k=2ij+i+j>m
另由假设知{3+2(k-m)}={3+2((2ij+i+j)-m)}表素数
而{3+2((2ij+i+j)-1)}={(2i+1)(2j+1)}表奇合数
故,当k=2ij+i+j时,m≠1否则与假设相矛盾 ∴m>1
∴ k=2ij+i+j>m>1 :
∴{1+2m}>3,{3+2(k-m)}={3+((2ij+i+j)-m)}>3 ^m\9
证毕
假设推论② 2ij+i+j≠m+3q q∈N+      {1+2(m+3q)}表大于9的素数 ;
证 :
由假设推论①知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q)}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数 ok
证毕
以上两个假设推论是建立在我文“2°假设n=k时命题成立 即能够找到一个不大于k的正整数m 使得2(n+2)=2(k+2)={1+2m}(素数)+{3+2(k-m)}(素数)成立”之假设理论基础之上的。
而您的所谓反例“反例:比如m=9,2m+1=19,k=9+3*12+1=46,2k+1=93,2((k+1)+2)=98,3+2((k+1)-3)=91。m=9、2m+1=19、k=46、2k+1=93均满足k=m+3q+1时的相关条件,但结果98=7+91不符合命题。”是建立在理论假设的基础之上吗?请问“m=9,2m+1=19,k=9+3*12+1=46......”是怎么来的?您能说“假设n=k=46 m=9时命题成立”--这样不合逻辑的话吗?每一个具体值都是客观的实在,它只能代表本身,不能代表别的数值,不能出现在理论的假设中;而代数式(例如2ij+i+j)则不同,它可代表所属集内所有元素值,因此它可出现在在理论的假设中。由理论假设推导出的推论就只能称其为假设推论,不能称其为定理或公式。假设推论是不能用具体值来验证的,只能看其是否符合数理逻辑来检验。
我举一实例来反驳您的反例以说明我哥猜命题的正确。当n=k=46时2(n+2)=2(k+2)=2(46+2)={1+2*3)(素数)+{3+2(46-3)}(素数)成立。
理论就是理论,数理逻辑与其不悖,实例具体值对其无奈。她可能与您的感性思维不符,那谁也没有办法。一个惯于将代数式与具体数值相联系感性思维的人是难于理解理论的抽象的。您太缺乏“悟性”了。
别再不懂装懂了,丢尽你八辈祖宗人了。
 楼主| 发表于 2011-3-27 21:40 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

哥猜面目原本素,哥欧不证搞复杂,拨云开雾识本面,马氏分流第一人。
 楼主| 发表于 2011-3-30 12:08 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

“造素数表必须先有一些小素数,而且必须首先定义什么样的数是素数”---那些小素数2,3,5,7,...p是如何得来的,是您天生就知之?p多大是大,多小是小,其界限在哪?请花齐空大师“文明”回答。无须心哥无脸人自以为是地涂脂抹粉和喷粪。
王元结舌瞪眼瞧,心哥狂吠冲天嚎。
马氏奇合数定理: 若m∈{2ij+i+j|i,j∈N+} 则{1+2m}必表不小于9的奇合数
证明:令m=2ij+i+j (i,j∈N+)
显然(2ij+i+j)∈{2ij+i+j|i,j∈N+}
故m∈{2ij+i+j|i,j∈N+}
那么 {1+2m}={1+2(2ij+i+j)}={(2i+1)(2j+1)}
显然 {(2i+1)(2j+1)}表不小于9的奇合数
证毕.
马氏奇素数定理: 若m∈CN+{2ij+i+j|i,j∈N+} 则{1+2m}必表奇素数
证明:设m∈CN+{2ij+i+j|i,j∈N+}
则由 CN+{2ij+i+j|i,j∈N+}【*】{2ij+i+j|i,j∈N+}={}和(2ij+i+j)∈{2ij+i+j|i,j∈N+}知 m≠2ij+i+j ∴ {1+2m}≠{1+2(2ij+i+j)}={(2i+1)(2j+1)}而{(2i+1)(2j+1)}表不小于9的奇合数 ∴{1+2m}不能表不小于9的奇合数 故而只能表奇素数
证毕.
注释:集{2ij+i+j|i,j∈N+}={4,7,10,12,13,16,17,19,......}
       集 CN+{2ij+i+j|i,j∈N+}={1,2,3,5,6,8,9,11,......}
       集N+={1,2,3,4,5,6,7,8,9,10,......}
 楼主| 发表于 2011-4-1 18:29 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

回心有一只歌等无脸人:您对我文的质疑与问题就如同您对埃氏筛法的解释一样。本来埃氏筛法世人皆明。可是经过您自以为是地解释,埃氏筛法便变了味---被抹了屎喷了粪---不是那么回事了。你对我文的质疑从来就是先加以自以为是地扭曲抹黑,然后再加以质疑与批判。我对此曾对你多次提出劝戒与抗议---“对我文的引述要原原本本,不要动一笔一划”可你就是改变不了你对我文先加以自以为是地扭曲并抹屎喷粪,后加以质疑与批判的天性。我怎么可能回答已被你扭曲并抹了屎喷了粪的问题呢!?
现正式回答你上贴的也被你扭曲抹黑了的一个看似小、实则大的问题。“你又说什么你那个狗屎命题公式中的n、m都不是变量了,你为什么不给出解释?!”---第一,我从未说过我命题中“n、m”都不是变量;第二,我有证据证明你曾说过“n、m”是两个变量;第三,我文原命题“形如 2(n+2) n∈N+ 都能找到一个不大于n的正整数m∈CN+{2ij+i+j/i,j∈N+}
使得:2(n+2)={ 1+ 2m }+{3 + 2(n-m)}  
                  素数            素数                   成立 ”
已对“n、m”说得清清楚楚、明明白白---只有白痴才弄不懂。
“知之为知之,不知为不知,是知也”,“人贵有自知之明”---不要再不懂装懂了。不懂装懂、自误误人,丢尽你八辈祖宗人了!!!
另,再回答您上贴的一个可笑的反问:“我问他能找比梅森素数2^43112609 -1 大的素数吗?”我再次坚定地回答:能,一定能。因为素数的存在理论上是无限大的,比梅森素数2^43112609 -1 大的素数一定存在---“存在即能找到”---但不是此刻,而是未来。理性思维的人都明了这一点。白痴是搞不懂得。

2011-4-1 17:40回复
 楼主| 发表于 2011-4-5 17:08 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

“造素数表必须先有一些小素数,而且必须首先定义什么样的数是素数”---那些小素数2,3,5,7,...p是如何得来的,是您天生就知之?p多大是大,多小是小,其界限在哪?请花齐空大师“文明”回答。无须心哥无脸人自以为是地涂脂抹粉和喷粪。
王元结舌瞪眼瞧,心哥狂吠冲天嚎。
马氏奇合数定理: 若m∈{2ij+i+j|i,j∈N+} 则{1+2m}必表不小于9的奇合数
证明:令m=2ij+i+j (i,j∈N+)
显然(2ij+i+j)∈{2ij+i+j|i,j∈N+}
故m∈{2ij+i+j|i,j∈N+}
那么 {1+2m}={1+2(2ij+i+j)}={(2i+1)(2j+1)}
显然 {(2i+1)(2j+1)}表不小于9的奇合数
证毕.
马氏奇素数定理: 若m∈CN+{2ij+i+j|i,j∈N+} 则{1+2m}必表奇素数
证明:设m∈CN+{2ij+i+j|i,j∈N+}
则由 CN+{2ij+i+j|i,j∈N+}【*】{2ij+i+j|i,j∈N+}={}和(2ij+i+j)∈{2ij+i+j|i,j∈N+}知 m≠2ij+i+j ∴ {1+2m}≠{1+2(2ij+i+j)}={(2i+1)(2j+1)}而{(2i+1)(2j+1)}表不小于9的奇合数 ∴{1+2m}不能表不小于9的奇合数 故而只能表奇素数
证毕.
注释:集{2ij+i+j|i,j∈N+}={4,7,10,12,13,16,17,19,......}
        集 CN+{2ij+i+j|i,j∈N+}={1,2,3,5,6,8,9,11,......}
        集N+={1,2,3,4,5,6,7,8,9,10,......}
 楼主| 发表于 2011-4-11 22:41 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

回复:沪上兵,请看你给我的回帖。
“2º-2.      若当      k=(2ij+i+j)∈{2ij+i+j/i,j∈N+}时 则有二假设推论
......
假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数
证 :
由以上假设知{5+2(k-m)}={5+2((2ij+i+j)-m)}表素数,而{5+((m+5q)-m)}={5(1+2q)}表奇合数
故2ij+i+j≠m+5q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+5q
∴{1+2(m+5q)}不能表不小于9的奇合数 故{1+2(m+5q}只能表大于9的素数
证毕 .
      以上过程有没有哪个地方不符合你的证明逻辑?”
你的帖子,没有哪个地方符合我的逻辑!你的帖子,没有哪个地方符合我的逻辑!!你的帖子,没有哪个地方符合我的逻辑!!!
请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗?请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗??
那些文字完全是打着已被你这个小丑扭曲了的作者思路的幌子,自以为是地臆造杜撰、无中生有的怪胎---与我的论文有什么关系?将自己臆造杜撰出来的怪物强加于人是何道理?还恬不知耻的说“礼貌待你”---一副沪上流氓的嘴脸。实话说,你的学识表现不值尊重。你也与心哥等无脸人一样---是个给人抹屎喷粪的天才。
沪上兵与窗前柳枝、心哥等无脸人---是一丘之貉。都担不起“尊重”二字的分量。
 楼主| 发表于 2011-4-13 22:38 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

回复:沪上兵,请看你给我的回帖。
“2º-2.      若当      k=(2ij+i+j)∈{2ij+i+j/i,j∈N+}时 则有二假设推论
......
假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数
证 :
由以上假设知{5+2(k-m)}={5+2((2ij+i+j)-m)}表素数,而{5+((m+5q)-m)}={5(1+2q)}表奇合数
故2ij+i+j≠m+5q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+5q
∴{1+2(m+5q)}不能表不小于9的奇合数 故{1+2(m+5q}只能表大于9的素数
证毕 .
     以上过程有没有哪个地方不符合你的证明逻辑?”
你的帖子,没有哪个地方符合我的逻辑!你的帖子,没有哪个地方符合我的逻辑!!你的帖子,没有哪个地方符合我的逻辑!!!
请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗?请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗??
那些文字完全是打着已被你这个小丑扭曲了的作者思路的幌子,自以为是地臆造杜撰、无中生有的怪胎---与我的论文有什么关系?将自己臆造杜撰出来的怪物强加于人是何道理?还恬不知耻的说“礼貌待你”---一副沪上流氓的嘴脸。实话说,你的学识表现不值尊重。你也与心哥等无脸人一样---是个给人抹屎喷粪的天才。
沪上兵与窗前柳枝、心哥等无脸人---是一丘之貉。都担不起“尊重”二字的分量。
 楼主| 发表于 2011-4-13 22:44 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

各位网友:
数学归纳法所根据的原理是自然数的一个最基本的性质---最小数原理.
(最小数原理)定理 任意一个非空集中,必有一个最小数.

设N是一个自然数的非空集.在N中任意取出一个数m.从1到m共有m个自然数,所以N中不超过m的数最多有m个.因为这是有限个数,所以其中有一个最小数.用k表示这个最小数.k对于N中不超过m的数来说是最小的,而N中其余的数都比m大.所以k就是N中的最小数.
证毕
(数学归纳法原理)定理 设有一个与自然数n有关的命题.如果
1°当n=1时命题成立;
2°假定n=k时成立。则n=k+1时命题也成立;那么这个命题对于一切自然数n都成立.
证(反证法)略.
供大家参考.
 楼主| 发表于 2011-4-16 17:51 | 显示全部楼层

[讨论]“马氏分流归纳法”之与数学归纳法

各位网友:
有人将我文2°-2中2((k+1)+2)={1+2*3}(素数)+{3+2((k+1)-3)}(素数)说成是“把绝大多数的偶数归结为7和另一个素数之和”---这种说法完全是说者自以为是的断章取义---是说者在理论推导中将k与具体数值相联系的感性思维所获得的事物的“表象”。在数学归纳法证题的过程第二步2°,是在假设n=k时命题成立后,利用假设所获得的条件进一步推导出n=k+1时命题也成立---这完全是理论推导(理性思维)的过程---是不能用具体值来说明的。而说者却时时处处用具体值来说话,从而得出“把绝大多数的偶数归结为7和另一个素数之和”的“表象”。在2°-2中利用假设条件推理,完全可以推导出无穷多个2((k+1)+2)表二奇素数之和的形式。例如:2((k+1)+2)={1+2*6}(素数)+{3+2((k+1)-6)}(素数),2((k+1)+2)={1+2*9}(素数)+{3+2((k+1)-9)}(素数),......。可我为什么不那样做呢?因为不需要也不必要更多的表达形式,只要那一种形式足矣!那一种形式就足以证明2((k+1)+2)是可以表二奇素数之和的---这正是数学归纳法证明第二步2°所必须必要的---只求n=k+1时命题也成立,这才是数归法证题第二步2°的“本质”。
理论就是理论,数理逻辑与其不悖,实例具体值奈何不得。她可能与您的感性思维不相吻合,那谁也没有办法---只能靠自己的“悟性”来解决了。只有科学的理性思维才能透彻事物的本质。
望再三思。谢谢
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-11 15:17 , Processed in 0.085889 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表