数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge^\star\color{navy}{\textbf{ 蠢可达}\color{red}{死磕}\textbf{陶哲轩}}\)

[复制链接]
发表于 2025-11-12 18:56 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-14 03:17 | 显示全部楼层

        陶哲轩认为〖自然数可趋近于无限,但不能等于无限〗!那么什么是无限,什么是趋向无限?因为威尔斯特拉斯ε—N定义中\(∞=\{n|n>N_ε(=[\tfrac{1}{ε}]+1\}\)\(N_ε∈\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\ne\infty\)(即数与集合问没有相等关系,只有属于不属于关系),威尔斯特拉斯把\(n\in\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1)\}\)称着n趋向无穷大,记为\(n\to\infty\),所以的〖自然数可趋近于无限,但不能等于无限〗的实质也就是\(\displaystyle\lim_{n \to \infty} n\ne\infty\)但\(\displaystyle\lim_{n \to \infty} n\in\infty\)!因为集合\(∞=\{n|n>N_ε,N_ε\in\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)!elim,陶哲轩的数学理是自洽,他的极限理论也数列极限理论;数项极限理论;单调极限集极限理论乃至皮亚诺公理在\(\displaystyle\lim_{n \to \infty} n\)处依然成立理论完全兼容的。所以真正的集合论白痴,自然数理论白痴恰好是民科领袖elim!
回复 支持 反对

使用道具 举报

发表于 2025-11-15 04:43 | 显示全部楼层

        陶哲轩认为〖自然数可趋近于无限,但不能等于无限〗!那么什么是无限,什么是趋向无限?因为威尔斯特拉斯ε—N定义中\(∞=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1)\}\)\((N_ε∈\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty} n\ne\infty\)(即数与集合问没有相等关系),威尔斯特拉斯把\(n\in\{n|n>N_ε\)\((=[\tfrac{1}{ε}]\)\(+1)\}\)称着n趋向无穷大,记为\(n\to\infty\),所以的〖自然数可趋近于无限,但不能等于无限〗的实质就是\(\displaystyle\lim_{n \to \infty} n\ne\infty\)但\(\displaystyle\lim_{n \to \infty} n\in\infty\)!因为集合\(∞=\{n|n>N_ε,N_ε\in\)\(\mathbb{N}\}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)!
        elim,陶哲轩的数学理论是自洽的。他的极限理论也与数列极限理论;数项级数极限理论;单调集列极限集极限理论;乃至皮亚诺公理在\(\displaystyle\lim_{n \to \infty} n\)处依然成立理论;……都是完全兼容的。
        其实不仅陶哲轩有“每个自然数都是有限数”的说法,就是AI也有这样的说法。我问过AI“每个自然数都是有限数”的“限”在哪里?AI回答我说:每个自然数都小于它的后继,所以自然数a的后继(a+1)就是自然数a“限”;根据这个解释,\(\nu-1=\displaystyle\lim_{n \to \infty}n-1\)也是有“限”自然数,因为\(\nu-1\)<\(\nu\),\(\nu\)就是\(\nu-1\)的“限”嘛!应该看到陶哲轩所说的“每个自然数都是有限数”的“限”也是指每个自然数的后继。否则,陶哲轩的自然数理论就将与他的自然数集是无限集理论(参见陶哲轩《陶哲轩实分析》(第三版P58页第9-13行)不自洽,并且也与其它分析数学的极限理论不兼容。也正因如此,无论是陶哲轩还是AI都从来未提出过\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\);\(\displaystyle\lim_{n \to \infty}n\)\(=Max\mathbb{N}\);\(\displaystyle\lim_{n \to \infty}n\)大于\(\{n\}\)中所有数;…这样一些似是而非的东西。
        elim你要相信什么那是你的自由,但你想通过宿贴频发、耍赖撒泼、谩骂讥讽等流氓手段,来强迫我接受你“要吃狗屎”的“理论”那就太不应该了。如果你是想通过打压我来刷你的存在感,那你注定是要失望的!
回复 支持 反对

使用道具 举报

发表于 2025-11-15 23:06 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-15 23:11 | 显示全部楼层

        陶哲轩认为〖自然数可趋近于无限,但不能等于无限〗!那么什么是无限,什么是趋向无限?因为威尔斯特拉斯ε—N定义中\(∞=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1)\}\)\((N_ε∈\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty} n\ne\infty\)(即数与集合问没有相等关系),威尔斯特拉斯把\(n\in\{n|n>N_ε\)\((=[\tfrac{1}{ε}]\)\(+1)\}\)称着n趋向无穷大,记为\(n\to\infty\),所以的〖自然数可趋近于无限,但不能等于无限〗的实质就是\(\displaystyle\lim_{n \to \infty} n\ne\infty\)但\(\displaystyle\lim_{n \to \infty} n\in\infty\)!因为集合\(∞=\{n|n>N_ε,N_ε\in\)\(\mathbb{N}\}\),所以\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)!
        elim,陶哲轩的数学理论是自洽的。他的极限理论也与数列极限理论;数项级数极限理论;单调集列极限集极限理论;乃至皮亚诺公理在\(\displaystyle\lim_{n \to \infty} n\)处依然成立理论;……都是完全兼容的。
        其实不仅陶哲轩有“每个自然数都是有限数”的说法,就是AI也有这样的说法。我问过AI“每个自然数都是有限数”的“限”在哪里?AI回答我说:每个自然数都小于它的后继,所以自然数a的后继(a+1)就是自然数a“限”;根据这个解释,\(\nu-1=\displaystyle\lim_{n \to \infty}n-1\)也是有“限”自然数,因为\(\nu-1\)<\(\nu\),\(\nu\)就是\(\nu-1\)的“限”嘛!应该看到陶哲轩所说的“每个自然数都是有限数”的“限”也是指每个自然数的后继。否则,陶哲轩的自然数理论就将与他的自然数集是无限集理论(参见陶哲轩《陶哲轩实分析》(第三版P58页第9-13行)不自洽,并且也与其它分析数学的极限理论不兼容。也正因如此,无论是陶哲轩还是AI都从来未提出过\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\);\(\displaystyle\lim_{n \to \infty}n\)\(=Max\mathbb{N}\);\(\displaystyle\lim_{n \to \infty}n\)大于\(\{n\}\)中所有数;…这样一些似是而非的东西。
        elim你要相信什么那是你的自由,但你想通过宿贴频发、耍赖撒泼、谩骂讥讽等流氓手段,来强迫我接受你“要吃狗屎”的“理论”那就太不应该了。如果你是想通过打压我来刷你的存在感,那你注定是要失望的!
回复 支持 反对

使用道具 举报

发表于 2025-11-15 23:17 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 01:55 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 02:13 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 02:14 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-17 06:05 | 显示全部楼层
elim自然数的定义是什么?自然数是由皮亚诺公理定义的还是由据Weierstrass极限定义的?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-7 19:24 , Processed in 0.089713 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表