|
本帖最后由 任在深 于 2020-6-6 01:06 编辑
《中华单位论》证明:
1. n-2n之间至少有一个素数单位!
(1) S(n-2n)=√n(√2-1).
2.孪生素数单位定理:孪生素数单位有无穷多。
(2)L(2n)=[2n+12(√2n-1)]/Al
3.上高猜想:对于正整数,a,b,c,X,Y,Z.如果有:
a^2+b^2=c^2,和 a^X+b^y=c^Z.
则有X=Y=Z=2.
证:
由《中华单位论》之中华簇知:
1. 中华簇;
(1)(√X^n)^2+(√Y^n)^2=(√Z^n)^2
中华簇的通解:
(2) X=(2MN)^2/n
Y=(M^2-N^2)^2/n
Z=(M^2+N^2)^2/n
当仅当 n=2时,即 2/n=2/2=1时,中华簇才有正整数解!
(3) X=2MN
Y=M^2-N^2
Z=M^2+N^2
因此 若 a^X+b^Y=c^Z有正整数解则:
必须 2/X=1,2/Y=1,2/Z=1
即 X=Y=Z=2.
证毕。
看来手巧不如家什妙!
解析数论不如单位高!
|
|