数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
楼主: 谢芝灵

上帝的诣意,神奇的证明:0.333...≠1/3

[复制链接]
发表于 2017-6-10 09:46 | 显示全部楼层
关于 1 的截图

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2017-6-10 09:54 | 显示全部楼层
谢芝灵作用说说哪段1/2^n走不过去,没走完?  当然,借助于狗屎堆逻辑,没有谬论是谢芝灵证不了的.
 楼主| 发表于 2017-6-10 10:41 | 显示全部楼层
elim 发表于 2017-6-10 01:54
谢芝灵作用说说哪段1/2^n走不过去,没走完?  当然,借助于狗屎堆逻辑,没有谬论是谢芝灵证不了的.

因为 n→∞,就变为没完没了。逻辑就是走不完。
 楼主| 发表于 2017-6-10 10:42 | 显示全部楼层

   按照 路程:1/2+1/4+1/8+1/16+.... 永`远这不完。

    因为1/2+1/4+1/8+1/16+.... 的逻辑就是没完没了。

    按照 时间:(1/2)秒+(1/4)秒+(1/8)秒+(1/16)秒+.... 永`远这不完。

    因为(1/2)秒+(1/4)秒+(1/8)秒+(1/16)秒+....的逻辑就是没完没了。

    上面与时间速度无关,用光速也是这样。

    因为 (1/2)秒+(1/4)秒+(1/8)秒+(1/16)秒+....仅仅是时间的多少变化

    光速走1/2 米的时间为:0.5m/300000000m秒=1/600000000 秒

    光速走1/4 米的时间为:0.25m/300000000m秒=1/1200000000 秒

    光速走1/8 米的时间为:0.125m/300000000m秒=1/2400000000 秒

    ......

    得 光走 1米路程的距离过程变化:0米+(1/2)米+(1/4)米+(1/8)米+(1/16)米+.... 路程永远走不完!

    得 光走 1米路程的时间过程变化:0秒+1/600000000 秒+1/1200000000 秒+1/2400000000 秒+.... 光速永远走不完!

    知道吗?与时间、速度无关。
 楼主| 发表于 2017-6-10 10:46 | 显示全部楼层

1是有限
1/2+1/4+1/8+1/6+..... 是无限。是没完没了。
你画的正方形还有个微小角 是空的,总填不满。

1≠1/2+1/4+1/8+1/6+.....
 楼主| 发表于 2017-6-10 11:18 | 显示全部楼层

因为 n→∞  lim 1/2^n=0,
所以 1/2^n≠0

由 1/2^n≠0,得 1≠1/2+1/4+1/8+....
发表于 2017-6-10 11:42 | 显示全部楼层
谢芝灵作用说说哪段1/2^n走不过去,没走完?  当然,借助于狗屎堆逻辑,没有谬论是谢芝灵证不了的.
 楼主| 发表于 2017-6-10 12:23 | 显示全部楼层
elim 发表于 2017-6-10 03:42
谢芝灵作用说说哪段1/2^n走不过去,没走完?  当然,借助于狗屎堆逻辑,没有谬论是谢芝灵证不了的.

因为 n→∞  lim 1/2^n=0,
所以 1/2^n≠0

由 1/2^n≠0,得 1≠1/2+1/4+1/8+....
与目标之差不能为0,只能接近0,所以没走完!
发表于 2017-6-10 12:38 | 显示全部楼层
谢芝灵说不出哪段1/2^n走不过去,没走完,还是“证明 ”了芝诺谬论.狗屎堆逻辑造就狗屎脑袋.
发表于 2017-6-10 13:42 | 显示全部楼层
elim 发表于 2017-6-10 04:38
谢芝灵说不出哪段1/2^n走不过去,没走完,还是“证明 ”了芝诺谬论.狗屎堆逻辑造就狗屎脑袋.

骂人比无根据戴帽子更无理! 亩产万斤不符合事实,亩产无穷多斤 更不符合事实。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-26 02:53 , Processed in 0.118095 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: