|

楼主 |
发表于 2019-3-5 19:14
|
显示全部楼层
本帖最后由 愚工688 于 2019-3-5 12:22 编辑
对于100亿区域,偶数素对连乘式计算值的相对误差统计数据:
10000000000-10000000098 : n= 50 μ= .1494 σx= .0002 δ(min)= .1491 δ(max)= .1497
取略大于最大相对误差的μ值,可以使得包含样本区域的比较大区域偶数的素对计算值呈现负相对误差;
如取μ=0.14488,则可能在60亿-100亿范围的偶数的素对计算值基本呈现正的相对误差,当然相对误差绝对值也不大。
具体验证实例如下:
G(5000000000)= 9703556 ; Sp( 5000000000 *)≈ 9714744.8 , Δ≈0.00115 ,
G(5000000002)= 7278155 ; Sp( 5000000002 *)≈ 7286058.6 , Δ≈0.001086 ,
G(5000000004)= 14695026; Sp( 5000000004 *)≈ 14710899.2 , Δ≈0.001080 ,
G(5000000006)= 7281567 ; Sp( 5000000006 *)≈ 7287536.2 , Δ≈0.0008197 ,
start time :19:19:58, end time:19:20:40
G(7000000000)= 15799407 ;Sp( 7000000000 *)≈ 15835420.4 , Δ≈0.002279,
G(7000000002)= 21065599 ;Sp( 7000000002 *)≈ 21113893.9 , Δ≈0.002293,
G(7000000004)= 10031099 ;Sp( 7000000004 *)≈ 10054979.2 , Δ≈0.002381,
G(7000000006)= 9873946 ;Sp( 7000000006 *)≈ 9897483.5 , Δ≈0.002384,
start time :19:20:48, end time:19:21:42
G(9000000000)= 33076258 ;Sp( 9000000000 *)≈ 33194922.9 , Δ≈0.003588 , k(m)= 2.66667
G(9000000002)= 14882271 ;Sp( 9000000002 *)≈ 14937715.3 , Δ≈0.003726 , k(m)= 1.2
G(9000000004)= 12998183 ;Sp( 9000000004 *)≈ 13040862.6 , Δ≈0.003284 , k(m)= 1.04762
G(9000000006)= 24809049 ;Sp( 9000000006 *)≈ 24896192.2 , Δ≈0.003513 , k(m)= 2
start time :19:21:52, end time:19:22:56
计算式如下:
Sp( 5000000000 *) = 1/(1+ .14488 )*( 5000000000 /2 -2)*p(m) ≈ 9714744.8 , k(m)= 1.33333
Sp( 5000000002 *) = 1/(1+ .14488 )*( 5000000002 /2 -2)*p(m) ≈ 7286058.6 , k(m)= 1
Sp( 5000000004 *) = 1/(1+ .14488 )*( 5000000004 /2 -2)*p(m) ≈ 14710899.2 , k(m)= 2.01905
Sp( 5000000006 *) = 1/(1+ .14488 )*( 5000000006 /2 -2)*p(m) ≈ 7287536.2 , k(m)= 1.0002
Sp( 7000000000 *) = 1/(1+ .14488 )*( 7000000000 /2 -2)*p(m) ≈ 15835420.4 , k(m)= 1.6
Sp( 7000000002 *) = 1/(1+ .14488 )*( 7000000002 /2 -2)*p(m) ≈ 21113893.9 , k(m)= 2.13333
Sp( 7000000004 *) = 1/(1+ .14488 )*( 7000000004 /2 -2)*p(m) ≈ 10054979.2 , k(m)= 1.01595
Sp( 7000000006 *) = 1/(1+ .14488 )*( 7000000006 /2 -2)*p(m) ≈ 9897483.5 , k(m)= 1.00003
Sp( 9000000000 *) = 1/(1+ .14488 )*( 9000000000 /2 -2)*p(m) ≈ 33194922.9 , k(m)= 2.66667
Sp( 9000000002 *) = 1/(1+ .14488 )*( 9000000002 /2 -2)*p(m) ≈ 14937715.3 , k(m)= 1.2
Sp( 9000000004 *) = 1/(1+ .14488 )*( 9000000004 /2 -2)*p(m) ≈ 13040862.6 , k(m)= 1.04762
Sp( 9000000006 *) = 1/(1+ .14488 )*( 9000000006 /2 -2)*p(m) ≈ 24896192.2 , k(m)= 2
使用 μ=0.14488时,比较合适的偶数素对连乘式的计算范围在30亿-40亿。
实验计算一下:
G(3500000000)= 8434100 ; Sp( 3500000000 *)≈ 8422053.3 , Δ≈-0.0014284 , k(m)= 1.6
G(3500000002)= 5352962 ; Sp( 3500000002 *)≈ 5347731.1 , Δ≈-0.0009772 , k(m)= 1.01595
G(3500000004)= 10537675 ; Sp( 3500000004 *)≈ 10527566.7 , Δ≈-0.0009593 , k(m)= 2
G(3500000006)= 5556940 ; Sp( 3500000006 *)≈ 5552250.7 , Δ≈-0.0008486 , k(m)= 1.0548
start time :19:59:35, end time:20:00:08use time :
G(4000000000)= 7930427 ;Sp( 4000000000 *)≈ 7928406.1 , Δ≈-0.0002548, k(m)= 1.33333
G(4000000002)= 11887591;Sp( 4000000002 *)≈ 11892609.2 ,Δ≈ 0.0004221, k(m)= 2
G(4000000004)= 9156520 ;Sp( 4000000004 *)≈ 9158119.3 , Δ≈ 0.0001746, k(m)= 1.54014
G(4000000006)= 6404412 ;Sp( 4000000006 *)≈ 6403338.9 , Δ≈-0.0001676, k(m)= 1.07686
计算式:
Sp( 3500000000 *) = 1/(1+ .14488 )*( 3500000000 /2 -2)*p(m) ≈ 8422053.3 , k(m)= 1.6
Sp( 3500000002 *) = 1/(1+ .14488 )*( 3500000002 /2 -2)*p(m) ≈ 5347731.1 , k(m)= 1.01595
Sp( 3500000004 *) = 1/(1+ .14488 )*( 3500000004 /2 -2)*p(m) ≈ 10527566.7 , k(m)= 2
Sp( 3500000006 *) = 1/(1+ .14488 )*( 3500000006 /2 -2)*p(m) ≈ 5552250.7 , k(m)= 1.0548
Sp( 4000000000 *) = 1/(1+ .14488 )*( 4000000000 /2 -2)*p(m) ≈ 7928406.1 , k(m)= 1.33333
Sp( 4000000002 *) = 1/(1+ .14488 )*( 4000000002 /2 -2)*p(m) ≈ 11892609.2 , k(m)= 2
Sp( 4000000004 *) = 1/(1+ .14488 )*( 4000000004 /2 -2)*p(m) ≈ 9158119.3 , k(m)= 1.54014
Sp( 4000000006 *) = 1/(1+ .14488 )*( 4000000006 /2 -2)*p(m) ≈ 6403338.9 , k(m)= 1.07686
偶数越大,修正系数的适用范围越大,因为偶数越大,连乘式的计算值相对误差的变化越来越缓慢 。 |
|